3 research outputs found

    PIRAGUA_resources [Dataset]

    Get PDF
    [EN] Contains 17 compressed folders (.zip) with shapefiles (.shp; requires a specific Geographic Information System GIS software) and one PDF file. Under a Open Data Commons Open Database License (ODbL).[ES] Contiene 17 carpetas comprimidas (.zip) con shapefiles (.shp; requiere software específico para Sistemas de Información Geográfica, SIG) y un archivo PDF. Bajo una "Open Data Commons Open Database License (ODbL)".[EN] Geospatial data about water use and exploitation in the Pyrenees (France, Spain, Andorra), generated within the project EFA210/16 PIRAGUA Project ("Evaluation and prospective of the water resources of the Pyrenees in a context of climate change, and adaptation measures with impact on the territory").[ES] Información geoespacial sobre usos y explotación de los recursos hídricos en los Pirineos (Francia, España y Andorra), generada en el contexto del proyecto EFA210/16 PIRAGUA ("Evaluación y prospectiva de los recursos hídricos de los Pirineos en un contexto de cambio climático, y medidas de adaptación con impacto en el territorio").[FR] Information géospatiale sur les usages et l'exploitation des ressources en eau dans les Pyrénées (France, Espagne et Andorre), générées dans le cadre du projet EFA210/16 PIRAGUA ("Evaluation et prospective des ressources en eau des Pyrénées dans un contexte de changement climatique, et mesures d'adaptation ayant un impact sur le territoire").This dataset was developed within the project EFA210/16 PIRAGUA (“Evaluación y prospectiva de los recursos hídricos de los Pirineos en un contexto de cambio climático, y medidas de adaptación con impacto en el territorio / Evaluation et prospective des ressources en eau des Pyrénées dans un contexte de changement climatique, et mesures d’adaptation avec un impact sur le territoire”), co-funded by the European Regional Development Fund (ERDF) through the Interreg V-A Spain France Andorra program (POCTEFA 2014-2020) (65%) and the project’s partners: CSIC, UPV/EHU, UB, OE, IGME, CNRS, BRGM, INRAE and OBSA (35%).Files in the data set: GIS shapefiles, point layers: - centrales.shp: hydroelectric stations. - est_ski.shp: ski resorts. - cap_embalses.shp: reservoirs. Capas SIG, lineales: - river_net.shp: hydrographic network. Capas SIG, poligonales: - demarcaciones.shp: hydrographic units (basin agencies). - juntas.shp: hydrographic management units (within hydrographic units). -uso_global.shp: total water use, per hydrographic management units. -uso_agri.shp: agricultural water use, per hydrographic management units. -uso_dom.shp: urban water use, per hydrographic management units.. -uso_ind.shp: industrial water use, per hydrographic management units.. -origen_sub.shp: total water use from subsurface origin, per hydrographic management units.. -origen_sup.shp: total water use from surface origin, per hydrographic management units.. -cap_embalsado.shp: capacidad de embalsado, por juntas de explotación hidrográfica. -dom_ski.shp: skiable domain, per hydrographic management units.. -prod_hydro.shp: hydro-power installed power and production, per hydrographic management units. -reservoirs.shp: reservoirs. -zonas_protegidas.shp: nature reserves.Data fields: central.shp: - name, name of the panel. - operator, operator. - power_MW, installed power, in megawatts. - power, installed power (class). - since, year of start of operations. - production, current average annual production, in GWh. - jump_m, vertical distance of the hydraulic jump, in m. est_ski.shp: - name, name of the station. - alt_min_m, minimum elevation, in m above sea level. - alt_max_m, maximum elevation, in m above sea level. - snow_p_%, percentage of the ski area with artificial snow cover. - snow_p_km, ski area with artificial snow cover, in km. - domain_km, ski area, in km. - capacity_p, lift capacity, in people per hour. cap_reservoirs.shp: - name, name of the reservoir. - operator, operator. - use, main uses (A, supply; V, ; H, ; R, ; S, ; ND; not available). - capacity_h, reservoir capacity, in mm^3 (hm^3). - size, size, in classes. - height_m, height of the dam, in m. - area_km2, maximum surface of the sheet of water, in km^2. - since, year of start of operations. river_net.shp: - OBJECTID, identifier of the river section. - REX, country (ES, Spain; FR, France; AD, Andorra). - STRAHLER, order of the river reach, according to Strahler's classification. demarcations.shp: - NOM_DEMAR, name of the river basin district. - ORG_CUENCA, responsible body. - CENTRO_DIR, directing center. - DIRECCION, Address. - WEB, web page. - TELEPHONE, telephone. joints.shp: - Basin, river basin district to which it belongs. Name, name of the exploitation board. - Area_km2, surface, in km^2. usage_global.shp: - Name, name of the exploitation board. - U_tot_av, uso del agua promedio anual, en Mm^3 (hm^3). uso_agri.shp: - Name, nombre de la junta de explotación. - U_agr_av, uso del agua promedio anual en el sector agrícola, en Mm^3 (hm^3). - U_agr_av_p, uso del agua promedio anual en el sector agrícola, porcentaje sobre el uso total. uso_dom.shp: - Name, nombre de la junta de explotación. - U_dom_av, uso del agua promedio anual para abastecimiento, en Mm^3 (hm^3). - U_dom_av_p, uso del agua promedio anual para abastecimiento, porcentaje sobre el uso total. uso_ind.shp: - Name, nombre de la junta de explotación. - U_ind_av, uso del agua promedio anual industrial, en Mm^3 (hm^3). - U_ind_av_p, uso del agua promedio anual industrial, porcentaje sobre el uso total. origen_sub.shp: - Name, nombre de la junta de explotación. - U_und_av, uso del agua de origen subterráneo, promedio anual, en Mm^3 (hm^3). - U_und_av_p, uso del agua de origen subterráneo, promedio anual, porcentaje sobre el uso total. origen_sup.shp: - Name, nombre de la junta de explotación. - U_sup_av, uso del agua de origen superficial, promedio anual, en Mm^3 (hm^3). - U_sup_av_p, uso del agua de origen superficial, promedio anual, porcentaje sobre el uso total. cap_embalsado.shp: - Name, nombre de la junta de explotación. - Reservoirs, número de embalses. - Res_hm3, capacidad de embalsado total, en Mm^3 (hm^3). - Capacity, capacidad de embalsado, en clases. dom_ski.shp: - Name, nombre de la junta de explotación. - Ski_num, número de estaciones de esquí. - Ski_km, dominio esquiable total, en km. - Ski_prod_%, dominio esquiable con producción de nieve artificial, en porcentaje sobre el dominio esquiable total. prod_hydro.shp: - Name, nombre de la junta de explotación. - Hydropow_num, número de centrales hidroeléctricas. - Hydropow _MW, potencia instalada, en MW. - Hydropow_GWh, producción media anual, en GWh. reservoirs.shp: - NOMBRE, nombre del embalse. zonas_protegidas.shp: - Name, nombre de la zona protegida. - type, tipo de figura de protección, en la lengua vernácula. - typeEnglish, tipo de figura de protección, en inglés. - legalRef, referencia legal. - legalDoc, documento legal. - legalFound, fecha de inicio de la figura de protección. - Authority, autoridad competente. - Leyenda, tipo de figura de protección, agrupado en clases principales. - Country, país (ES, España; FR, Francia; AD, Andorra).N

    Can NBS address the challenges of an urbanized Mediterranean catchment? The Lez case study

    Full text link
    International audienceThe Lez catchment is characterized by a rapid urbanization, due to the attractiveness of the city of Montpellier, and is exposed to a typical Mediterranean weather with high risk of flash flood and other emerging issues, such as air pollution, heat island effects and biodiversity losses. We present the evaluation of two types of NBS to address these challenges, (i) urbanization strategies that have an impact on the conservation of agricultural and natural land and (ii) a network of green infrastructure (GI), with a focus on the economic analysis. Our results reveal that our most ambitious GI strategy can reduce up to a 20% of the mean annual damages due to annual flood damages. The largest share of the economic value of our NBS however lies in the co-benefits they generate. Overall, the two GI strategies present a positive cost-benefit analysis. We finally identify a pathway towards implementation in terms of financing and organizational challenges

    Water cycle and water resources of the Pyrenees under climate change: the PIRAGUA datasets.

    Full text link
    International audienceThe Pyrenees range is a transboundary mountain region shared by Spain, France and Andorra. As many other mountain regions, the Pyrenees host the upper catchments and recharge zones of the region's main river basins and aquifers. Therefore, it is the main source of water resources that are used in a much larger area that includes important urban concentrations and highly productive rural areas. This territory and its water resources are particularly vulnerable to the consequences of climate change. The PIRAGUA project (2018-2021, https://www.opcc-ctp.org/piragua), funded by FEDER through the POCTEFA Program of the EU, addressed the characterization of the hydrological cycle of the Pyrenees in a climate change context, in order to improve the territories’ adaptation capacity. The goals of the project were to unify and homogenize the existing information, prospect future scenarios, develop indicators of change, and propose adaptation strategies with impact on the territory. The project results were compiled in a series of regional datasets, and are available through the geo-portal of the Pyrenees Climate Change Observatory (https://opcc-ctp.org/geoportal). These include the following resources: PIRAGUA_resources stores information related to water resources use, exploitation and management; PIRAGUA_indicators contains daily streamflow and aquifer level indicators from observed series during the historical period (1950-2019); PIRAGUA_flood includes the number and classification of flood events, at the municipal level; PIRAGUA_atmos_analysis contains observation-based meteorological data suited for hydrological simulation, for the historical period (1981-2010); PIRAGUA_atmos_climate is a statistical downscaling of six global climatic models, for the historical and future periods (1981-2100); finally, two datasets include the hydrological water cycle components derived from simulations with different hydrological models (SWAT, SASER, GIS-BALAN and RECHARGE) and climate forcings: PIRAGUA_hydro_analysis (1981-2010) and PIRAGUA_hydro_climate (1981-2100). This contribution is devoted to describing these datasets and the tools to explore them and acquire the data, and to provide examples of the main results regarding the climate change effects on the Pyrenees’ water resources
    corecore