3 research outputs found

    Perceptual Modeling and Reproduction of Gloss

    Get PDF
    The reproduction of gloss on displays is generally not based on perception and as a consequence does not guarantee the best visualization of a real material. The reproduction is composed of four different steps: measurement, modeling, rendering, and display. The minimum number of measurements required to approximate a real material is unknown. The error metrics used to approximate measurements with analytical BRDF models are not based on perception, and the best visual approximation is not always obtained. Finally, the gloss perception difference between real objects and objects seen on displays has not sufficiently been studied and might be influencing the observer judgement. This thesis proposes a systematic, scalable, and perceptually based workflow to represent real materials on displays. First, the gloss perception difference between real objects and objects seen on displays was studied. Second, the perceptual performance of the error metrics currently in use was evaluated. Third, a projection into a perceptual gloss space was defined, enabling the computation of a perceptual gloss distance measure. Fourth, the uniformity of the gloss space was improved by defining a new gloss difference equation. Finally, a systematic, scalable, and perceptually based workflow was defined using cost-effective instruments

    The effect of motion on the perception of material appearance

    Get PDF
    We analyze the effect of motion in the perception of material appearance. First, we create a set of stimuli containing 72 realistic materials, rendered with varying degrees of linear motion blur. Then we launch a large-scale study on Mechanical Turk to rate a given set of perceptual attributes, such as brightness, roughness, or the perceived strength of reflections. Our statistical analysis shows that certain attributes undergo a significant change, varying appearance perception under motion. In addition, we further investigate the perception of brightness, for the particular cases of rubber and plastic materials. We create new stimuli, with ten different luminance levels and seven motion degrees. We launch a new user study to retrieve their perceived brightness. From the users'' judgements, we build two-dimensional maps showing how perceived brightness varies as a function of the luminance and motion of the material
    corecore