4,145 research outputs found
What do gas-rich galaxies actually tell us about modified Newtonian dynamics?
It has recently been claimed that measurements of the baryonic Tully-Fisher
relation (BTFR), a power-law relationship between the observed baryonic masses
and outer rotation velocities of galaxies, support the predictions of modified
Newtonian dynamics for the slope and scatter in the relation, while challenging
the cold dark matter (CDM) paradigm. We investigate these claims, and find
that: 1) the scatter in the data used to determine the BTFR is in conflict with
observational uncertainties on the data; 2) these data do not make strong
distinctions regarding the best-fit BTFR parameters; 3) the literature contains
a wide variety of measurements of the BTFR, many of which are discrepant with
the recent results; and 4) the claimed CDM "prediction" for the BTFR is a gross
oversimplification of the complex galaxy-scale physics involved. We conclude
that the BTFR is currently untrustworthy as a test of CDM.Comment: 5 pages, 2 figures; minor revisions to match published versio
A Search for New Physics with the BEACON Mission
The primary objective of the Beyond Einstein Advanced Coherent Optical
Network (BEACON) mission is a search for new physics beyond general relativity
by measuring the curvature of relativistic space-time around Earth. This
curvature is characterized by the Eddington parameter \gamma -- the most
fundamental relativistic gravity parameter and a direct measure for the
presence of new physical interactions. BEACON will achieve an accuracy of 1 x
10^{-9} in measuring the parameter \gamma, thereby going a factor of 30,000
beyond the present best result involving the Cassini spacecraft. Secondary
mission objectives include: (i) a direct measurement of the "frame-dragging"
and geodetic precessions in the Earth's rotational gravitomagnetic field, to
0.05% and 0.03% accuracy correspondingly, (ii) first measurement of gravity's
non-linear effects on light and corresponding 2nd order spatial metric's
effects to 0.01% accuracy. BEACON will lead to robust advances in tests of
fundamental physics -- this mission could discover a violation or extension of
general relativity and/or reveal the presence of an additional long range
interaction in physics. BEACON will provide crucial information to separate
modern scalar-tensor theories of gravity from general relativity, probe
possible ways for gravity quantization, and test modern theories of
cosmological evolution.Comment: 8 pages, 2 figures, 2 table
PERCEIVED DIFFERENCES IN SKATING CHARACTERISTICS RESULTING FROM THREE CROSS SECTIONAL SKATE BLADE PROFILES
The purpose of this study was to document differences in perceived skating characteristics resulting from three unique cross sectional skate blade profiles. Sixteen (n=16) University level hockey players were used in this double blind study looking at the perceived performance differences of four different skate blade profiles. No significant differences were found between skate blade profiles, preferred skate blade profile and time to complete given drills. Future research should look at different blade profiles and their interaction at ice level
Quadratic response theory for spin-orbit coupling in semiconductor heterostructures
This paper examines the properties of the self-energy operator in
lattice-matched semiconductor heterostructures, focusing on nonanalytic
behavior at small values of the crystal momentum, which gives rise to
long-range Coulomb potentials. A nonlinear response theory is developed for
nonlocal spin-dependent perturbing potentials. The ionic pseudopotential of the
heterostructure is treated as a perturbation of a bulk reference crystal, and
the self-energy is derived to second order in the perturbation. If spin-orbit
coupling is neglected outside the atomic cores, the problem can be analyzed as
if the perturbation were a local spin scalar, since the nonlocal spin-dependent
part of the pseudopotential merely renormalizes the results obtained from a
local perturbation. The spin-dependent terms in the self-energy therefore fall
into two classes: short-range potentials that are analytic in momentum space,
and long-range nonanalytic terms that arise from the screened Coulomb potential
multiplied by a spin-dependent vertex function. For an insulator at zero
temperature, it is shown that the electronic charge induced by a given
perturbation is exactly linearly proportional to the charge of the perturbing
potential. These results are used in a subsequent paper to develop a
first-principles effective-mass theory with generalized Rashba spin-orbit
coupling.Comment: 20 pages, no figures, RevTeX4; v2: final published versio
Reflection of light and heavy holes from a linear potential barrier
In this paper we study reflection of holes in direct-band semiconductors from
the linear potential barrier. It is shown that light-heavy hole transformation
matrix is universal. It depends only on a dimensionless product of the light
hole longitudinal momentum and the characteristic length determined by the
slope of the potential and doesn't depend on the ratio of light and heavy hole
masses, provided this ratio is small. It is shown that the transformation
coefficient goes to zero both in the limit of small and large longitudinal
momenta, however the phase of a reflected hole is different in these limits. An
approximate analytical expression for the light-heavy hole transformation
coefficient is found.Comment: 6 pages, 2 figure
First-principles envelope-function theory for lattice-matched semiconductor heterostructures
In this paper a multi-band envelope-function Hamiltonian for lattice-matched
semiconductor heterostructures is derived from first-principles norm-conserving
pseudopotentials. The theory is applicable to isovalent or heterovalent
heterostructures with macroscopically neutral interfaces and no spontaneous
bulk polarization. The key assumption -- proved in earlier numerical studies --
is that the heterostructure can be treated as a weak perturbation with respect
to some periodic reference crystal, with the nonlinear response small in
comparison to the linear response. Quadratic response theory is then used in
conjunction with k.p perturbation theory to develop a multi-band effective-mass
Hamiltonian (for slowly varying envelope functions) in which all interface
band-mixing effects are determined by the linear response. To within terms of
the same order as the position dependence of the effective mass, the quadratic
response contributes only a bulk band offset term and an interface dipole term,
both of which are diagonal in the effective-mass Hamiltonian. Long-range
multipole Coulomb fields arise in quantum wires or dots, but have no
qualitative effect in two-dimensional systems beyond a dipole contribution to
the band offsets.Comment: 25 pages, no figures, RevTeX4; v3: final published versio
Accurate quadratic-response approximation for the self-consistent pseudopotential of semiconductor nanostructures
Quadratic-response theory is shown to provide a conceptually simple but
accurate approximation for the self-consistent one-electron potential of
semiconductor nanostructures. Numerical examples are presented for GaAs/AlAs
and InGaAs/InP (001) superlattices using the local-density approximation to
density-functional theory and norm-conserving pseudopotentials without
spin-orbit coupling. When the reference crystal is chosen to be the
virtual-crystal average of the two bulk constituents, the absolute error in the
quadratic-response potential for Gamma(15) valence electrons is about 2 meV for
GaAs/AlAs and 5 meV for InGaAs/InP. Low-order multipole expansions of the
electron density and potential response are shown to be accurate throughout a
small neighborhood of each reciprocal lattice vector, thus providing a further
simplification that is confirmed to be valid for slowly varying envelope
functions. Although the linear response is about an order of magnitude larger
than the quadratic response, the quadratic terms are important both
quantitatively (if an accuracy of better than a few tens of meV is desired) and
qualitatively (due to their different symmetry and long-range dipole effects).Comment: 16 pages, 20 figures; v2: new section on limitations of theor
Coherent optical phase transfer over a 32-km fiber with 1-s instability at
The phase coherence of an ultrastable optical frequency reference is fully
maintained over actively stabilized fiber networks of lengths exceeding 30 km.
For a 7-km link installed in an urban environment, the transfer instability is
at 1-s. The excess phase noise of 0.15 rad, integrated from
8 mHz to 25 MHz, yields a total timing jitter of 0.085 fs. A 32-km link
achieves similar performance. Using frequency combs at each end of the
coherent-transfer fiber link, a heterodyne beat between two independent
ultrastable lasers, separated by 3.5 km and 163 THz, achieves a 1-Hz linewidth.Comment: 4 pages, 4 figure
Systematic study of the Sr clock transition in an optical lattice
With ultracold Sr confined in a magic wavelength optical lattice, we
present the most precise study (2.8 Hz statistical uncertainty) to-date of the
- optical clock transition with a detailed analysis of
systematic shifts (20 Hz uncertainty) in the absolute frequency measurement of
429 228 004 229 867 Hz. The high resolution permits an investigation of the
optical lattice motional sideband structure. The local oscillator for this
optical atomic clock is a stable diode laser with its Hz-level linewidth
characterized across the optical spectrum using a femtosecond frequency comb.Comment: 4 pages, 4 figures, 1 tabl
- …