4,165 research outputs found
Reflection of light and heavy holes from a linear potential barrier
In this paper we study reflection of holes in direct-band semiconductors from
the linear potential barrier. It is shown that light-heavy hole transformation
matrix is universal. It depends only on a dimensionless product of the light
hole longitudinal momentum and the characteristic length determined by the
slope of the potential and doesn't depend on the ratio of light and heavy hole
masses, provided this ratio is small. It is shown that the transformation
coefficient goes to zero both in the limit of small and large longitudinal
momenta, however the phase of a reflected hole is different in these limits. An
approximate analytical expression for the light-heavy hole transformation
coefficient is found.Comment: 6 pages, 2 figure
Quadratic response theory for spin-orbit coupling in semiconductor heterostructures
This paper examines the properties of the self-energy operator in
lattice-matched semiconductor heterostructures, focusing on nonanalytic
behavior at small values of the crystal momentum, which gives rise to
long-range Coulomb potentials. A nonlinear response theory is developed for
nonlocal spin-dependent perturbing potentials. The ionic pseudopotential of the
heterostructure is treated as a perturbation of a bulk reference crystal, and
the self-energy is derived to second order in the perturbation. If spin-orbit
coupling is neglected outside the atomic cores, the problem can be analyzed as
if the perturbation were a local spin scalar, since the nonlocal spin-dependent
part of the pseudopotential merely renormalizes the results obtained from a
local perturbation. The spin-dependent terms in the self-energy therefore fall
into two classes: short-range potentials that are analytic in momentum space,
and long-range nonanalytic terms that arise from the screened Coulomb potential
multiplied by a spin-dependent vertex function. For an insulator at zero
temperature, it is shown that the electronic charge induced by a given
perturbation is exactly linearly proportional to the charge of the perturbing
potential. These results are used in a subsequent paper to develop a
first-principles effective-mass theory with generalized Rashba spin-orbit
coupling.Comment: 20 pages, no figures, RevTeX4; v2: final published versio
Coherent optical phase transfer over a 32-km fiber with 1-s instability at
The phase coherence of an ultrastable optical frequency reference is fully
maintained over actively stabilized fiber networks of lengths exceeding 30 km.
For a 7-km link installed in an urban environment, the transfer instability is
at 1-s. The excess phase noise of 0.15 rad, integrated from
8 mHz to 25 MHz, yields a total timing jitter of 0.085 fs. A 32-km link
achieves similar performance. Using frequency combs at each end of the
coherent-transfer fiber link, a heterodyne beat between two independent
ultrastable lasers, separated by 3.5 km and 163 THz, achieves a 1-Hz linewidth.Comment: 4 pages, 4 figure
Biofilms on glacial surfaces: hotspots for biological activity
Glaciers are important constituents in the Earth’s hydrological and carbon cycles, with predicted warming leading to increases in glacial melt and the transport of nutrients to adjacent and downstream aquatic ecosystems. Microbial activity on glacial surfaces has been linked to the biological darkening of cryoconite particles, affecting albedo and increased melt. This phenomenon, however, has only been demonstrated for alpine glaciers and the Greenland Ice Sheet, excluding Antarctica. In this study, we show via confocal laser scanning microscopy that microbial communities on glacial surfaces in Antarctica persist in biofilms. Overall, ~35% of the cryoconite sediment surfaces were covered by biofilm. Nanoscale scale secondary ion mass spectrometry measured significant enrichment of 13C and 15N above background in both Bacteroidetes and filamentous cyanobacteria (i.e., Oscillatoria) when incubated in the presence of 13C–NaHCO3 and 15NH4. This transfer of newly synthesised organic compounds was dependent on the distance of heterotrophic Bacteroidetes from filamentous Oscillatoria. We conclude that the spatial organisation within these biofilms promotes efficient transfer and cycling of nutrients. Further, these results support the hypothesis that biofilm formation leads to the accumulation of organic matter on cryoconite minerals, which could influence the surface albedo of glaciers
Long-distance frequency transfer over an urban fiber link using optical phase stabilization
We transferred the frequency of an ultra-stable laser over 86 km of urban
fiber. The link is composed of two cascaded 43-km fibers connecting two
laboratories, LNE-SYRTE and LPL in Paris area. In an effort to realistically
demonstrate a link of 172 km without using spooled fiber extensions, we
implemented a recirculation loop to double the length of the urban fiber link.
The link is fed with a 1542-nm cavity stabilized fiber laser having a sub-Hz
linewidth. The fiber-induced phase noise is measured and cancelled with an all
fiber-based interferometer using commercial off the shelf pigtailed
telecommunication components. The compensated link shows an Allan deviation of
a few 10-16 at one second and a few 10-19 at 10,000 seconds
First-principles envelope-function theory for lattice-matched semiconductor heterostructures
In this paper a multi-band envelope-function Hamiltonian for lattice-matched
semiconductor heterostructures is derived from first-principles norm-conserving
pseudopotentials. The theory is applicable to isovalent or heterovalent
heterostructures with macroscopically neutral interfaces and no spontaneous
bulk polarization. The key assumption -- proved in earlier numerical studies --
is that the heterostructure can be treated as a weak perturbation with respect
to some periodic reference crystal, with the nonlinear response small in
comparison to the linear response. Quadratic response theory is then used in
conjunction with k.p perturbation theory to develop a multi-band effective-mass
Hamiltonian (for slowly varying envelope functions) in which all interface
band-mixing effects are determined by the linear response. To within terms of
the same order as the position dependence of the effective mass, the quadratic
response contributes only a bulk band offset term and an interface dipole term,
both of which are diagonal in the effective-mass Hamiltonian. Long-range
multipole Coulomb fields arise in quantum wires or dots, but have no
qualitative effect in two-dimensional systems beyond a dipole contribution to
the band offsets.Comment: 25 pages, no figures, RevTeX4; v3: final published versio
Accurate quadratic-response approximation for the self-consistent pseudopotential of semiconductor nanostructures
Quadratic-response theory is shown to provide a conceptually simple but
accurate approximation for the self-consistent one-electron potential of
semiconductor nanostructures. Numerical examples are presented for GaAs/AlAs
and InGaAs/InP (001) superlattices using the local-density approximation to
density-functional theory and norm-conserving pseudopotentials without
spin-orbit coupling. When the reference crystal is chosen to be the
virtual-crystal average of the two bulk constituents, the absolute error in the
quadratic-response potential for Gamma(15) valence electrons is about 2 meV for
GaAs/AlAs and 5 meV for InGaAs/InP. Low-order multipole expansions of the
electron density and potential response are shown to be accurate throughout a
small neighborhood of each reciprocal lattice vector, thus providing a further
simplification that is confirmed to be valid for slowly varying envelope
functions. Although the linear response is about an order of magnitude larger
than the quadratic response, the quadratic terms are important both
quantitatively (if an accuracy of better than a few tens of meV is desired) and
qualitatively (due to their different symmetry and long-range dipole effects).Comment: 16 pages, 20 figures; v2: new section on limitations of theor
Inducing Visuomotor Adaptation Using Virtual Reality Gaming with a Virtual Shift as a Treatment for Unilateral Spatial Neglect
Unilateral spatial neglect after stroke is characterized by reduced responses to stimuli on the contralesional side, causing significant impairments in self-care and safety. Conventional visuomotor adaptation (VMA) with prisms that cause a lateral shift of the visual scene can decrease neglect symptoms but is not engaging according to patients. Performing VMA within a virtual reality (VR) environment may be more engaging but has never been tested. To determine if VMA can be elicited in a VR environment, healthy subjects (n=7) underwent VMA that was elicited by either wearing prisms that caused an optical shift, or by application of a virtual shift of the hand cursor within the VR environment. A low cost VR system was developed by coupling the Kinect v2 gaming sensor to online games via the Flexible Action and Articulated Skeleton Toolkit (FAAST) software. The adaptation phase of training consisted of a reaching task in online games or in a custom target pointing program. Following the adaptation phase the optical or virtual shift was removed and participants were assessed during the initial portion of the de-adaptation phase for the presence of an after-effect on their reaching movements, with lateral reaching errors indicating the successful induction of VMA. Results show that practicing reaching in a VR environment with a virtual shift lead to a horizontal after-effect similar to conventional prism adaptation. The results demonstrate that VMA can be elicited in a VR environment and suggest that VR gaming therapy could be used to improve recovery from unilateral spatial neglect
- …