8 research outputs found

    MiR-142-3p is a RANKL-dependent inducer of cell death in osteoclasts

    Get PDF
    MicroRNA are small, non-coding, single-stranded RNAs that are estimated to regulate ~60% of the human genome. MiRNA profiling of monocyte-to-osteoclast differentiation identified miR-142-3p as a miRNA that is significantly, differentially expressed throughout osteoclastogenesis. Enforced expression of miR-142-3p via transient transfection with miR-142-3p mimic inhibited cell-to-cell contact and fusion, decreased protein kinase C alpha expression, and ultimately reduced cell viability. miR-142-3p was also identified as significantly differentially expressed during monocyte-to-macrophage differentiation and overexpression of miR-142-3p prevented their conversion to osteoclasts. Furthermore, the inhibitory effect of miR-142-3p on osteoclastogenesis extended to the conversion of a third osteoclast precursor cell type- dendritic cells. These results demonstrate miR-142-3p to be a negative regulator of osteoclastogenesis from the 3 main precursor cell types: monocytes, macrophages and dendritic cells. Importantly, decreased survival was dependent upon both miR-142-3p expression and RANK-signaling, with no harmful effects detected in the absence of this combination. As such, miR-142-3p represents a novel target for the selective removal of osteoclasts by targeting of osteoclastogenic pathways

    MicroRNAs responsive to Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis LPS modulate expression of genes regulating innate immunity in human macrophages

    Get PDF
    microRNAs (miRNA) are a class of small noncoding RNAs that regulate post-transcriptional expression of their respective target genes and are responsive to various stimuli, including lipopolysaccharide (LPS). Here we examined the early (4h) miRNA responses of THP1-differentiated macrophages challenged with LPS derived from the periodontal pathogens, Aggregatibacter actinomycetemcomitans (Aa), Porphyromonas gingivalis (Pg) or environmentally modified LPS obtained from Pg grown in cigarette smoke extract. Predicted miRNA-gene target interactions for LPS-responsive miR-29b and let-7f were confirmed using dual-luciferase assays and by transfection experiments using miRNA mimics and inhibitors. Convergent and divergent miRNA profiles were observed in treated samples where differences in miRNA levels related to the type, concentration and incubation times of LPS challenge. Dual-luciferase experiments revealed miR-29b targeting of IL-6Rα and IFN-γ inducible protein 30 (IFI30) and let-7f targeting of suppressor of cytokine signaling 4 (SOCS4) and Thrombospondin-1 (TSP-1). Transfection experiments confirmed miR-29b and let-7f modulation of IL-6R and SOCS4 protein expression levels, respectively. Thus, we demonstrate convergent/divergent miRNA responses to wild type and its environmentally-modified LPS and demonstrate miRNA targeting of key genes linked to inflammation and immunity. Our data indicate that these LPS-responsive miRNAs may play a key role in fine-tuning the host response to periodontal pathogens

    Environmental conditioning in the control of macrophage thrombospondin-1 production

    Get PDF
    Thrombospondin-1 (TSP-1) is a multifunctional protein which is secreted into the extracellular matrix during inflammation, where it modulates numerous components of the immune infiltrate. Macrophages are a source of TSP-1, which they produce in response to TLR4 mediated signals. Their production of TSP-1 is regulated by environmental signals that establish a threshold for the level of protein secretion that can be induced by LPS stimulation. Th1 and Th2 cytokines raise this threshold which leads to less TSP-1 production, while signals that promote the generation of regulatory macrophages lower it. TSP-1 plays no direct role in the regulation of its own secretion. In vivo in uveitis, in the presence of TLR-4 ligands, TSP-1 is initially produced by recruited macrophages but this decreases in the presence of inflammatory cytokines. The adaptive immune system therefore plays a dominant role in regulating TSP-1 production in the target organ during acute inflammation

    Leukocyte Production of Inflammatory Mediators Is Inhibited by the Antioxidants Phloretin, Silymarin, Hesperetin, and Resveratrol

    No full text
    Antioxidants possess significant therapeutic potential for the treatment of inflammatory disorders. One such disorder is periodontitis characterised by an antimicrobial immune response, inflammation, and irreversible changes to the supporting structures of the teeth. Recognition of conserved pathogen-associated molecular patterns is a crucial component of innate immunity to Gram-negative bacteria such as Escherichia coli, as well as the periodontal pathogen Aggregatibacter actinomycetemcomitans. In this study, we investigated the antioxidants Phloretin, Silymarin, Hesperetin, and Resveratrol to ascertain whether they altered the production of inflammatory mediators by innately-activated leukocytes. Peripheral blood mononuclear cells were stimulated with lipopolysaccharide purified from Aggregatibacter actinomycetemcomitans, and the production of cytokines, chemokines, and differentiation factors was assayed by enzyme-linked immunosorbent assay, cytometric bead array, and RT-PCR. Significant inhibition of these factors was achieved upon treatment with Phloretin, Silymarin, Hesperetin, and Resveratrol. These data further characterise the potent anti-inflammatory properties of antioxidants. Their ability to inhibit the production of inflammatory cytokines, chemokines, and differentiation factors by a heterogeneous population of leukocytes has clear implications for their therapeutic potential in vivo
    corecore