30,513 research outputs found
Neutrinoless Double Beta Decay with SNO+
SNO+ will search for neutrinoless double beta decay by loading 780 tonnes of
linear alkylbenzene liquid scintillator with O(tonne) of neodymium. Using
natural Nd at 0.1% loading will provide 43.7 kg of 150Nd given its 5.6%
abundance and allow the experiment to reach a sensitivity to the effective
neutrino mass of 100-200 meV at 90% C.L in a 3 year run. The SNO+ detector has
ultra low backgrounds with 7000 tonnes of water shielding and self-shielding of
the scintillator. Distillation and several other purification techniques will
be used with the aim of achieving Borexino levels of backgrounds. The
experiment is fully funded and data taking with light-water will commence in
2012 with scintillator data following in 2013.Comment: 4 pages, 2 figures, prepared for TAUP 201
A simple algorithm for computing canonical forms
It is well known that all linear time-invariant controllable systems can be transformed to Brunovsky canonical form by a transformation consisting only of coordinate changes and linear feedback. However, the actual procedures for doing this have tended to be overly complex. The technique introduced here is envisioned as an on-line procedure and is inspired by George Meyer's tangent model for nonlinear systems. The process utilizes Meyer's block triangular form as an intermedicate step in going to Brunovsky form. The method also involves orthogonal matrices, thus eliminating the need for the computation of matrix inverses. In addition, the Kronecker indices can be computed as a by-product of this transformation so it is necessary to know them in advance
The Effects of Stress Tensor Fluctuations upon Focusing
We treat the gravitational effects of quantum stress tensor fluctuations. An
operational approach is adopted in which these fluctuations produce
fluctuations in the focusing of a bundle of geodesics. This can be calculated
explicitly using the Raychaudhuri equation as a Langevin equation. The physical
manifestation of these fluctuations are angular blurring and luminosity
fluctuations of the images of distant sources. We give explicit results for the
case of a scalar field on a flat background in a thermal state.Comment: 26 pages, 1 figure, new material added in Sect. III and in Appendices
B and
Gravitons and Lightcone Fluctuations II: Correlation Functions
A model of a fluctuating lightcone due to a bath of gravitons is further
investigated. The flight times of photons between a source and a detector may
be either longer or shorter than the light propagation time in the background
classical spacetime, and will form a Gaussian distribution centered around the
classical flight time. However, a pair of photons emitted in rapid succession
will tend to have correlated flight times. We derive and discuss a correlation
function which describes this effect. This enables us to understand more fully
the operational significance of a fluctuating lightcone. Our results may be
combined with observational data on pulsar timing to place some constraints on
the quantum state of cosmological gravitons.Comment: 16 pages and two figures, uses eps
Development of shape memory metal as the actuator of a fail safe mechanism
A small, compact, lightweight device was developed using shape memory alloy (SMA) in wire form to actuate a pin-puller that decouples the flanges of two shafts. When the SMA is heated it contracts producing a useful force and stroke. As it cools, it can be reset (elongated in this case) by applying a relatively small force. Resistive heating is accomplished by running a current through the SMA wire for a controlled length of time. The electronics to drive the device are not elaborate or complicated, consisting of a timed current source. The total available contraction is 3 percent of the length of the wire. This device, the engineering properties of the SMA, and the tests performed to verify the design concept are described
Analysis of the wind tunnel test of a tilt rotor power force model
Two series of wind tunnel tests were made to determine performance, stability and control, and rotor wake interaction on the airframe, using a one-tenth scale powered force model of a tilt rotor aircraft. Testing covered hover (IGE/OCE), helicopter, conversion, and airplane flight configurations. Forces and moments were recorded for the model from predetermined trim attitudes. Control positions were adjusted to trim flight (one-g lift, pitching moment and drag zero) within the uncorrected test data balance accuracy. Pitch and yaw sweeps were made about the trim attitudes with the control held at the trimmed settings to determine the static stability characteristics. Tail on, tail off, rotors on, and rotors off configurations were testes to determine the rotor wake effects on the empennage. Results are presented and discussed
Applications of artificial intelligence to mission planning
The scheduling problem facing NASA-Marshall mission planning is extremely difficult for several reasons. The most critical factor is the computational complexity involved in developing a schedule. The size of the search space is large along some dimensions and infinite along others. It is because of this and other difficulties that many of the conventional operation research techniques are not feasible or inadequate to solve the problems by themselves. Therefore, the purpose is to examine various artificial intelligence (AI) techniques to assist conventional techniques or to replace them. The specific tasks performed were as follows: (1) to identify mission planning applications for object oriented and rule based programming; (2) to investigate interfacing AI dedicated hardware (Lisp machines) to VAX hardware; (3) to demonstrate how Lisp may be called from within FORTRAN programs; (4) to investigate and report on programming techniques used in some commercial AI shells, such as Knowledge Engineering Environment (KEE); and (5) to study and report on algorithmic methods to reduce complexity as related to AI techniques
Averaged Energy Conditions in 4D Evaporating Black Hole Backgrounds
Using Visser's semi-analytical model for the stress-energy tensor
corresponding to the conformally coupled massless scalar field in the Unruh
vacuum, we examine, by explicitly evaluating the relevant integrals over
half-complete geodesics, the averaged weak (AWEC) and averaged null (ANEC)
energy conditions along with Ford-Roman quantum inequality-type restrictions on
negative energy in the context of four dimensional evaporating black hole
backgrounds. We find that in all cases where the averaged energy conditions
fail, there exist quantum inequality bounds on the magnitude and duration of
negative energy densities.Comment: Revtex, 13 pages, to appear in Phy. Rev.
Restrictions on Negative Energy Density in Flat Spacetime
In a previous paper, a bound on the negative energy density seen by an
arbitrary inertial observer was derived for the free massless, quantized scalar
field in four-dimensional Minkowski spacetime. This constraint has the form of
an uncertainty principle-type limitation on the magnitude and duration of the
negative energy density. That result was obtained after a somewhat complicated
analysis. The goal of the current paper is to present a much simpler method for
obtaining such constraints. Similar ``quantum inequality'' bounds on negative
energy density are derived for the electromagnetic field, and for the massive
scalar field in both two and four-dimensional Minkowski spacetime.Comment: 17 pages, including two figures, uses epsf, minor revisions in the
Introduction, conclusions unchange
Simulating Impacts of Extreme Weather Events on Urban Transport Infrastructure in the UK
Urban areas face many risks from future climate change and their infrastructure will be placed under more pressure
due to changes in climate extremes. Using the Tyndall Centre Urban Integrated Assessment Framework, this paper
describes a methodology used to assess the impacts of future climate extremes on transport infrastructure in
London. Utilising high-resolution projections for future climate in the UK, alongside stochastic weather generators
for downscaling, urban temperature and flooding models are used to provide information on the likelihood of future
extremes. These are then coupled with spatial network models of urban transport infrastructure and, using thresholds
to define the point at which systems cease to function normally, disruption to the networks can be simulated.
Results are shown for both extreme heat and urban surface water flooding events and the impacts on the travelling
population, in terms of both disruption time and monetary cost
- …