26,736 research outputs found
Quantum Inequalities on the Energy Density in Static Robertson-Walker Spacetimes
Quantum inequality restrictions on the stress-energy tensor for negative
energy are developed for three and four-dimensional static spacetimes. We
derive a general inequality in terms of a sum of mode functions which
constrains the magnitude and duration of negative energy seen by an observer at
rest in a static spacetime. This inequality is evaluated explicitly for a
minimally coupled scalar field in three and four-dimensional static
Robertson-Walker universes. In the limit of vanishing curvature, the flat
spacetime inequalities are recovered. More generally, these inequalities
contain the effects of spacetime curvature. In the limit of short sampling
times, they take the flat space form plus subdominant curvature-dependent
corrections.Comment: 18 pages, plain LATEX, with 3 figures, uses eps
Statistical analysis of thermospheric gravity waves from Fabry-Perot Interferometer measurements of atomic oxygen
Data from the Fabry-Perot Interferometers at KEOPS (Sweden), Sodankylä (Finland), and Svalbard (Norway), have been analysed for gravity wave activity on all the clear nights from 2000 to 2006. A total of 249 nights were available from KEOPS, 133 from Sodankylä and 185 from the Svalbard FPI. A Lomb-Scargle analysis was performed on each of these nights to identify the periods of any wave activity during the night. Comparisons between many nights of data allow the general characteristics of the waves that are present in the high latitude upper thermosphere to be determined. Comparisons were made between the different parameters: the atomic oxygen intensities, the thermospheric winds and temperatures, and for each parameter the distribution of frequencies of the waves was determined. No dependence on the number of waves on geomagnetic activity levels, or position in the solar cycle, was found. All the FPIs have had different detectors at various times, producing different time resolutions of the data, so comparisons between the different years, and between data from different sites, showed how the time resolution determines which waves are observed. In addition to the cutoff due to the Nyquist frequency, poor resolution observations significantly reduce the number of short-period waves (5 h) detected. Comparisons between the number of gravity waves detected at KEOPS and Sodankylä over all the seasons showed a similar proportion of waves to the number of nights used for both sites, as expected since the two sites are at similar latitudes and therefore locations with respect to the auroral oval, confirming this as a likely source region. Svalbard showed fewer waves with short periods than KEOPS data for a season when both had the same time resolution data. This gives a clear indication of the direction of flow of the gravity waves, and corroborates that the source is the auroral oval. This is because the energy is dissipated through heating in each cycle of a wave, therefore, over a given distance, short period waves lose more energy than long and dissipate before they reach their target
High time resolution measurements of the thermosphere from Fabry-Perot Interferometer measurements of atomic oxygen
Recent advances in the performance of CCD detectors
have enabled a high time resolution study of the high
latitude upper thermosphere with Fabry-Perot Interferometers(FPIs) to be performed. 10-s integration times were used during a campaign in April 2004 on an FPI located in northern Sweden in the auroral oval. The FPI is used to study the thermosphere by measuring the oxygen red line emission at 630.0 nm, which emits at an altitude of approximately 240 km. Previous time resolutions have been 4 min at best, due to the cycle of look directions normally observed. By using 10 s rather than 40 s integration times, and by limiting the number of full cycles in a night, high resolution measurements down to 15 s were achievable. This has allowed the maximum variability of the thermospheric winds and temperatures, and 630.0 nm emission intensities, at approximately 240 km, to be determined as a few minutes. This is a significantly greater variability than the often assumed value of 1 h or more. A Lomb-Scargle analysis of this data has shown evidence of gravity wave activity with waves with short periods. Gravity waves are an important feature of mesospherelower thermosphere (MLT) dynamics, observed using many techniques and providing an important mechanism for energy transfer between atmospheric regions. At high latitudes gravity waves may be generated in-situ by localised auroral activity. Short period waves were detected in all four clear nights when this experiment was performed, in 630.0 nm intensities and thermospheric winds and temperatures. Waves with many periodicities were observed, from periods of several hours, down to 14 min. These waves were seen in all parameters over several nights, implying that this variability is a typical property of the thermosphere
Bounds on negative energy densities in flat spacetime
We generalise results of Ford and Roman which place lower bounds -- known as
quantum inequalities -- on the renormalised energy density of a quantum field
averaged against a choice of sampling function. Ford and Roman derived their
results for a specific non-compactly supported sampling function; here we use a
different argument to obtain quantum inequalities for a class of smooth, even
and non-negative sampling functions which are either compactly supported or
decay rapidly at infinity. Our results hold in -dimensional Minkowski space
() for the free real scalar field of mass . We discuss various
features of our bounds in 2 and 4 dimensions. In particular, for massless field
theory in 2-dimensional Minkowski space, we show that our quantum inequality is
weaker than Flanagan's optimal bound by a factor of 3/2.Comment: REVTeX, 13 pages and 2 figures. Minor typos corrected, one reference
adde
Relation Between Einstein And Quantum Field Equations
We show that there exists a choice of scalar field modes, such that the
evolution of the quantum field in the zero-mass and large-mass limits is
consistent with the Einstein equations for the background geometry. This choice
of modes is also consistent with zero production of these particles and thus
corresponds to a preferred vacuum state preserved by the evolution. In the
zero-mass limit, we find that the quantum field equation implies the Einstein
equation for the scale factor of a radiation-dominated universe; in the
large-mass case, it implies the corresponding Einstein equation for a
matter-dominated universe. Conversely, if the classical radiation-dominated or
matter-dominated Einstein equations hold, there is no production of scalar
particles in the zero and large mass limits, respectively. The suppression of
particle production in the large mass limit is over and above the expected
suppression at large mass. Our results hold for a certain class of conformally
ultrastatic background geometries and therefore generalize previous results by
one of us for spatially flat Robertson-Walker background geometries. In these
geometries, we find that the temporal part of the graviton equations reduces to
the temporal equation for a massless minimally coupled scalar field, and
therefore the results for massless particle production hold also for gravitons.
Within the class of modes we study, we also find that the requirement of zero
production of massless scalar particles is not consistent with a non-zero
cosmological constant. Possible implications are discussed.Comment: Latex, 24 pages. Minor changes in text from original versio
Disentanglement and Decoherence without dissipation at non-zero temperatures
Decoherence is well understood, in contrast to disentanglement. According to
common lore, irreversible coupling to a dissipative environment is the
mechanism for loss of entanglement. Here, we show that, on the contrary,
disentanglement can in fact occur at large enough temperatures even for
vanishingly small dissipation (as we have shown previously for decoherence).
However, whereas the effect of on decoherence increases exponentially with
time, the effect of on disentanglement is constant for all times,
reflecting a fundamental difference between the two phenomena. Also, the
possibility of disentanglement at a particular increases with decreasing
initial entanglement.Comment: 3 page
Quantum Inequalities and Singular Energy Densities
There has been much recent work on quantum inequalities to constrain negative
energy. These are uncertainty principle-type restrictions on the magnitude and
duration of negative energy densities or fluxes. We consider several examples
of apparent failures of the quantum inequalities, which involve passage of an
observer through regions where the negative energy density becomes singular. We
argue that this type of situation requires one to formulate quantum
inequalities using sampling functions with compact support. We discuss such
inequalities, and argue that they remain valid even in the presence of singular
energy densities.Comment: 18 pages, LaTex, 2 figures, uses eps
Restrictions on Negative Energy Density in Flat Spacetime
In a previous paper, a bound on the negative energy density seen by an
arbitrary inertial observer was derived for the free massless, quantized scalar
field in four-dimensional Minkowski spacetime. This constraint has the form of
an uncertainty principle-type limitation on the magnitude and duration of the
negative energy density. That result was obtained after a somewhat complicated
analysis. The goal of the current paper is to present a much simpler method for
obtaining such constraints. Similar ``quantum inequality'' bounds on negative
energy density are derived for the electromagnetic field, and for the massive
scalar field in both two and four-dimensional Minkowski spacetime.Comment: 17 pages, including two figures, uses epsf, minor revisions in the
Introduction, conclusions unchange
A Superluminal Subway: The Krasnikov Tube
The ``warp drive'' metric recently presented by Alcubierre has the problem
that an observer at the center of the warp bubble is causally separated from
the outer edge of the bubble wall. Hence such an observer can neither create a
warp bubble on demand nor control one once it has been created. In addition,
such a bubble requires negative energy densities. One might hope that
elimination of the first problem might ameliorate the second as well. We
analyze and generalize a metric, originally proposed by Krasnikov for two
spacetime dimensions, which does not suffer from the first difficulty. As a
consequence, the Krasnikov metric has the interesting property that although
the time for a one-way trip to a distant star cannot be shortened, the time for
a round trip, as measured by clocks on Earth, can be made arbitrarily short. In
our four dimensional extension of this metric, a ``tube'' is constructed along
the path of an outbound spaceship, which connects the Earth and the star.
Inside the tube spacetime is flat, but the light cones are opened out so as to
allow superluminal travel in one direction. We show that, although a single
Krasnikov tube does not involve closed timelike curves, a time machine can be
constructed with a system of two non-overlapping tubes. Furthermore, it is
demonstrated that Krasnikov tubes, like warp bubbles and traversable wormholes,
also involve unphysically thin layers of negative energy density, as well as
large total negative energies, and therefore probably cannot be realized in
practice.Comment: 20 pages, LATEX, 5 eps figures, uses \eps
Stochastic Spacetime and Brownian Motion of Test Particles
The operational meaning of spacetime fluctuations is discussed. Classical
spacetime geometry can be viewed as encoding the relations between the motions
of test particles in the geometry. By analogy, quantum fluctuations of
spacetime geometry can be interpreted in terms of the fluctuations of these
motions. Thus one can give meaning to spacetime fluctuations in terms of
observables which describe the Brownian motion of test particles. We will first
discuss some electromagnetic analogies, where quantum fluctuations of the
electromagnetic field induce Brownian motion of test particles. We next discuss
several explicit examples of Brownian motion caused by a fluctuating
gravitational field. These examples include lightcone fluctuations, variations
in the flight times of photons through the fluctuating geometry, and
fluctuations in the expansion parameter given by a Langevin version of the
Raychaudhuri equation. The fluctuations in this parameter lead to variations in
the luminosity of sources. Other phenomena which can be linked to spacetime
fluctuations are spectral line broadening and angular blurring of distant
sources.Comment: 15 pages, 3 figures. Talk given at the 9th Peyresq workshop, June
200
- …