206 research outputs found
High sensitivity measurement of 224Ra and 226Ra in water with an improved hydrous titanium oxide technique at the Sudbury Neutrino Observatory
The existing hydrous titanium oxide (HTiO) technique for the measurement of
224Ra and 226Ra in the water at the Sudbury Neutrino Observatory (SNO) has been
changed to make it faster and less sensitive to trace impurities in the HTiO
eluate. Using HTiO-loaded filters followed by cation exchange adsorption and
HTiO co-precipitation, Ra isotopes from 200-450 tonnes of heavy water can be
extracted and concentrated into a single sample of a few millilitres with a
total chemical efficiency of 50%. Combined with beta-alpha coincidence
counting, this method is capable of measuring 2.0x10^3 uBq/kg of 224Ra and
3.7x10^3 uBq/kg of 226Ra from the 232Th and 238U decay chains, respectively,
for a 275 tonne D2O assay, which are equivalent to 5x10^16 g Th/g and 3x10^16 g
U/g in heavy water.Comment: 8 Pages, 2 figures and 2 table
On a Light Spinless Particle Coupled to Photons
A pseudoscalar or scalar particle that couples to two photons but not
to leptons, quarks and nucleons would have effects in most of the experiments
searching for axions, since these are based on the coupling.
We examine the laboratory, astrophysical and cosmological constraints on
and study whether it may constitute a substantial part of the dark matter. We
also generalize the interactions to possess gauge
invariance, and analyze the phenomenological implications.Comment: LaTex, 20p., 6 figures. Changes in sections 4, 5 and figure 2, our
bounds are now more stringent. To be published in Physical Review
The calibration of the Sudbury Neutrino Observatory using uniformly distributed radioactive sources
The production and analysis of distributed sources of 24Na and 222Rn in the
Sudbury Neutrino Observatory (SNO) are described. These unique sources provided
accurate calibrations of the response to neutrons, produced through
photodisintegration of the deuterons in the heavy water target, and to low
energy betas and gammas. The application of these sources in determining the
neutron detection efficiency and response of the 3He proportional counter
array, and the characteristics of background Cherenkov light from trace amounts
of natural radioactivity is described.Comment: 24 pages, 13 figure
First Observation of Coherent Production in Neutrino Nucleus Interactions with 2 GeV
The MiniBooNE experiment at Fermilab has amassed the largest sample to date
of s produced in neutral current (NC) neutrino-nucleus interactions at
low energy. This paper reports a measurement of the momentum distribution of
s produced in mineral oil (CH) and the first observation of coherent
production below 2 GeV. In the forward direction, the yield of events
observed above the expectation for resonant production is attributed primarily
to coherent production off carbon, but may also include a small contribution
from diffractive production on hydrogen. Integrated over the MiniBooNE neutrino
flux, the sum of the NC coherent and diffractive modes is found to be (19.5
1.1 (stat) 2.5 (sys))% of all exclusive NC production at
MiniBooNE. These measurements are of immediate utility because they quantify an
important background to MiniBooNE's search for
oscillations.Comment: Submitted to Phys. Lett.
Understanding the Chemical Complexity in Circumstellar Envelopes of C-rich AGB Stars: the Case of IRC +10216
The circumstellar envelopes of carbon-rich AGB stars show a chemical
complexity that is exemplified by the prototypical object IRC +10216, in which
about 60 different molecules have been detected to date. Most of these species
are carbon chains of the type CnH, CnH2, CnN, HCnN. We present the detection of
new species (CH2CHCN, CH2CN, H2CS, CH3CCH and C3O) achieved thanks to the
systematic observation of the full 3 mm window with the IRAM 30m telescope plus
some ARO 12m observations. All these species, known to exist in the
interstellar medium, are detected for the first time in a circumstellar
envelope around an AGB star. These five molecules are most likely formed in the
outer expanding envelope rather than in the stellar photosphere. A pure gas
phase chemical model of the circumstellar envelope is reasonably successful in
explaining the derived abundances, and additionally allows to elucidate the
chemical formation routes and to predict the spatial distribution of the
detected species.Comment: 4 pages, 4 figures; to appear in Astrophysics and Space Science,
special issue of "Science with ALMA: a new era for Astrophysics" conference,
November, 13-17 2006, ed. R. Bachille
Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events
The - oscillation frequency has been measured with a sample of
23 million \B\bar B pairs collected with the BABAR detector at the PEP-II
asymmetric B Factory at SLAC. In this sample, we select events in which both B
mesons decay semileptonically and use the charge of the leptons to identify the
flavor of each B meson. A simultaneous fit to the decay time difference
distributions for opposite- and same-sign dilepton events gives ps.Comment: 7 pages, 1 figure, submitted to Physical Review Letter
Phosphoinositide-binding interface proteins involved in shaping cell membranes
The mechanism by which cell and cell membrane shapes are created has long been a subject of great interest. Among the phosphoinositide-binding proteins, a group of proteins that can change the shape of membranes, in addition to the phosphoinositide-binding ability, has been found. These proteins, which contain membrane-deforming domains such as the BAR, EFC/F-BAR, and the IMD/I-BAR domains, led to inward-invaginated tubes or outward protrusions of the membrane, resulting in a variety of membrane shapes. Furthermore, these proteins not only bind to phosphoinositide, but also to the N-WASP/WAVE complex and the actin polymerization machinery, which generates a driving force to shape the membranes
Size-selective mortality during freshwater and marine life stages of steelhead related to freshwater growth in the Skagit River, Washington
Wild steelhead trout, Oncorhynchus mykiss, in the Puget Sound are currently in decline, and very little is known about the early life history of these threatened fish. This study evaluated consequences of early growth and survival to smolt or adult stages in different precipitation zones of the Skagit River Basin, Washington. The objectives of this study were to determine whether significant size-selective mortality (SSM) in wild steelhead could be detected between freshwater stages and returning adults; and if so, how the magnitude of SSM varied among juveniles rearing in different precipitation zones (snow and mixed rain-snow). Wild steelhead were sampled as juveniles, smolts, and adults, and scales were measured to compare back-calculated size distributions and growth rates of rearing juveniles with individuals that survived from an earlier life stage to the smolt and adult stages. Back-calculated size-at-annulus comparisons indicated that steelhead in the snow zone were significantly larger at annulus-1 than those in the mixed zone. Steelhead sampled as adults were significantly larger than those sampled as juveniles at annuli-1, -2, and -3, and larger than those sampled as smolts at annuli-2 and -3, Steelhead sampled as smolts were larger than those sampled as juveniles at annuli-1 and -2, but smolts and juveniles were the same size at annulus-3. The disparity in size-at-age-2 and -3 between steelhead sampled at earlier and later life stages suggested that fast growth during the second or third freshwater growing seasons was vitally important for survival to adulthood, and that both freshwater and marine survival could be attributed, in part, to size attained at earlier life stages in freshwater. Efforts for recovery of threatened Puget Sound steelhead could benefit by considering SSM in freshwater environments, and identifying factors that limit growth during early life stages
The Sudbury Neutrino Observatory
The Sudbury Neutrino Observatory is a second generation water Cherenkov
detector designed to determine whether the currently observed solar neutrino
deficit is a result of neutrino oscillations. The detector is unique in its use
of D2O as a detection medium, permitting it to make a solar model-independent
test of the neutrino oscillation hypothesis by comparison of the charged- and
neutral-current interaction rates. In this paper the physical properties,
construction, and preliminary operation of the Sudbury Neutrino Observatory are
described. Data and predicted operating parameters are provided whenever
possible.Comment: 58 pages, 12 figures, submitted to Nucl. Inst. Meth. Uses elsart and
epsf style files. For additional information about SNO see
http://www.sno.phy.queensu.ca . This version has some new reference
Test of Lorentz and CPT violation with Short Baseline Neutrino Oscillation Excesses
The sidereal time dependence of MiniBooNE electron neutrino and anti-electron
neutrino appearance data are analyzed to search for evidence of Lorentz and CPT
violation. An unbinned Kolmogorov-Smirnov test shows both the electron neutrino
and anti-electron neutrino appearance data are compatible with the null
sidereal variation hypothesis to more than 5%. Using an unbinned likelihood fit
with a Lorentz-violating oscillation model derived from the Standard Model
Extension (SME) to describe any excess events over background, we find that the
electron neutrino appearance data prefer a sidereal time-independent solution,
and the anti-electron neutrino appearance data slightly prefer a sidereal
time-dependent solution. Limits of order 10E-20 GeV are placed on combinations
of SME coefficients. These limits give the best limits on certain SME
coefficients for muon neutrino to electron neutrino and anti-muon neutrino to
anti-electron neutrino oscillations. The fit values and limits of combinations
of SME coefficients are provided.Comment: 14 pages, 3 figures, and 2 tables, submitted to Physics Letters
- ā¦