22 research outputs found

    Bioanalysis in Oxidative Stress Biomarkers of oxidative damage to DNA and repair

    No full text
    Abstract Oxidative-stress-induced damage to DNA includes a multitude of lesions, many of which are mutagenic and have multiple roles in cancer and aging. Many lesions have been characterized by MS-based methods after extraction and digestion of DNA. These preparation steps may cause spurious base oxidation, which is less likely to occur with methods such as the comet assay, which are based on nicking of the DNA strand at modified bases, but offer less specificity. The European Standards Committee on Oxidative DNA Damage has concluded that the true levels of the most widely studied lesion, 8-oxodG (8-oxo-7,8-dihydro-2 -deoxyguanosine), in cellular DNA is between 0.5 and 5 lesions per 10 6 dG bases. Base excision repair of oxidative damage to DNA can be assessed by nicking assays based on oligonucleotides with lesions or the comet assay, by mRNA expression levels or, in the case of, e.g., OGG1 (8-oxoguanine DNA glycosylase 1), responsible for repair of 8-oxodG, by genotyping. Products of repair in DNA or the nucleotide pool, such as 8-oxodG, excreted into the urine can be assessed by MS-based methods and generally reflects the rate of damage. Experimental and population-based studies indicate that many environmental factors, including particulate air pollution, cause oxidative damage to DNA, whereas diets rich in fruit and vegetables or antioxidant supplements may reduce the levels and enhance repair. Urinary excretion of 8-oxodG, genotype and expression of OGG1 have been associated with risk of cancer in cohort settings, whereas altered levels of damage, repair or urinary excretion in case-control settings may be a consequence rather than the cause of the disease

    Controlled human wood smoke exposure: oxidative stress, inflammation and microvascular function

    No full text
    Abstract Background Exposure to wood smoke is associated with respiratory symptoms, whereas knowledge on systemic effects is limited. We investigated effects on systemic inflammation, oxidative stress and microvascular function (MVF) after controlled wood smoke exposure. Methods In a randomised, double-blinded, cross-over study 20 non-smoking atopic subjects were exposed at rest to 14, 220, or 354 μg/m3 of particles from a well-burning modern wood stove for 3 h in a climate controlled chamber with 2 week intervals. We investigated the level of oxidatively damaged DNA, inflammatory markers and adhesion molecules before and 0, 6 and 20 h after exposure. Six h after exposure we measured MVF non-invasively by digital peripheral artery tonometry following arm ischemia. Results The MVF score was unaltered after inhalation of clean air (1.58 ± 0.07; mean ± SEM), low (1.51 ± 0.07) or high (1.61 ± 0.09) concentrations of wood smoke particles in atopic subjects, whereas unexposed non-atopic subjects had higher score (1.91 ± 0.09). The level of oxidatively damaged DNA, mRNA of ITGAL, CCL2, TNF, IL6, IL8, HMOX1, and OGG1 and surface marker molecules ICAM1, ITGAL and L-selectin in peripheral blood mononuclear cells were not affected by inhalation of wood smoke particles. Conclusions Exposure to wood smoke had no effect on markers of oxidative stress, DNA damage, cell adhesion, cytokines or MVF in atopic subjects.</p

    Controlled human wood smoke exposure:oxidative stress, inflammation and microvascular function

    Get PDF
    BACKGROUND: Exposure to wood smoke is associated with respiratory symptoms, whereas knowledge on systemic effects is limited. We investigated effects on systemic inflammation, oxidative stress and microvascular function (MVF) after controlled wood smoke exposure. METHODS: In a randomised, double-blinded, cross-over study 20 non-smoking atopic subjects were exposed at rest to 14, 220, or 354 μg/m(3 )of particles from a well-burning modern wood stove for 3 h in a climate controlled chamber with 2 week intervals. We investigated the level of oxidatively damaged DNA, inflammatory markers and adhesion molecules before and 0, 6 and 20 h after exposure. Six h after exposure we measured MVF non-invasively by digital peripheral artery tonometry following arm ischemia. RESULTS: The MVF score was unaltered after inhalation of clean air (1.58 ± 0.07; mean ± SEM), low (1.51 ± 0.07) or high (1.61 ± 0.09) concentrations of wood smoke particles in atopic subjects, whereas unexposed non-atopic subjects had higher score (1.91 ± 0.09). The level of oxidatively damaged DNA, mRNA of ITGAL, CCL2, TNF, IL6, IL8, HMOX1, and OGG1 and surface marker molecules ICAM1, ITGAL and L-selectin in peripheral blood mononuclear cells were not affected by inhalation of wood smoke particles. CONCLUSIONS: Exposure to wood smoke had no effect on markers of oxidative stress, DNA damage, cell adhesion, cytokines or MVF in atopic subjects
    corecore