45 research outputs found
Ambient Temperature Influences Diet Selection and Physiology of an Herbivorous Mammal, \u3cem\u3eNeotoma albigula\u3c/em\u3e
The whitethroat woodrat (Neotoma albigula) eats juniper (Juniperus monosperma), but the amount of juniper in its diet varies seasonally. We tested whether changes in juniper consumption are due to changes in ambient temperature and what the physiological consequences of consuming plant secondary compounds (PSCs) at different ambient temperatures might be. Woodrats were acclimated to either 20ÂşC or 28ÂşC. Later, they were given two diets to choose from (50% juniper and a nontoxic control) for 7 d. Food intake, resting metabolic rate (RMR), and body temperature (Tb) were measured over the last 2 d. Woodrats at 28ÂşC ate significantly less juniper, both proportionally and absolutely, than woodrats at 20ÂşC. RMRs were higher for woodrats consuming juniper regardless of ambient temperature, and Tb was higher for woodrats consuming juniper at 28ÂşC than for woodrats eating control diet at 28ÂşC. Thus, juniper consumption by N. albigula is influenced by ambient temperature. We conclude that juniper may influence thermoregulation in N. albigula in ways that are helpful at low temperatures but harmful at warmer temperatures in that juniper PSCs may be more toxic at warmer temperatures. The results suggest that increases in ambient temperature associated with climate change could significantly influence foraging behavior of mammalian herbivores
Scaling Up Sagebrush Chemistry with Near-Infrared Spectroscopy and UAS-Acquired Hyperspectral Imagery
Sagebrush ecosystems (Artemisia spp.) face many threats including large wildfires and conversion to invasive annuals, and thus are the focus of intense restoration efforts across the western United States. Specific attention has been given to restoration of sagebrush systems for threatened herbivores, such as Greater Sage-Grouse (Centrocercus urophasianus) and pygmy rabbits (Brachylagus idahoensis), reliant on sagebrush as forage. Despite this, plant chemistry (e.g., crude protein, monoterpenes and phenolics) is rarely considered during reseeding efforts or when deciding which areas to conserve. Near-infrared spectroscopy (NIRS) has proven effective in predicting plant chemistry under laboratory conditions in a variety of ecosystems, including the sagebrush steppe. Our objectives were to demonstrate the scalability of these models from the laboratory to the field, and in the air with a hyperspectral sensor on an unoccupied aerial system (UAS). Sagebrush leaf samples were collected at a study site in eastern Idaho, USA. Plants were scanned with an ASD FieldSpec 4 spectroradiometer in the field and laboratory, and a subset of the same plants were imaged with a SteadiDrone Hexacopter UAS equipped with a Rikola hyperspectral sensor (HSI). All three sensors generated spectral patterns that were distinct among species and morphotypes of sagebrush at specific wavelengths. Lab-based NIRS was accurate for predicting crude protein and total monoterpenes (R2 = 0.7–0.8), but the same NIRS sensor in the field was unable to predict either crude protein or total monoterpenes (R2 \u3c 0.1). The hyperspectral sensor on the UAS was unable to predict most chemicals (R2 \u3c 0.2), likely due to a combination of too few bands in the Rikola HSI camera (16 bands), the range of wavelengths (500–900 nm), and small sample size of overlapping plants (n = 28–60). These results show both the potential for scaling NIRS from the lab to the field and the challenges in predicting complex plant chemistry with hyperspectral UAS. We conclude with recommendations for next steps in applying UAS to sagebrush ecosystems with a variety of new sensors
Fearscapes: Mapping Functional Properties of Cover for Prey with Terrestrial LiDAR
Heterogeneous vegetation structure can create a variable landscape of predation risk—a fearscape—that influences the use and selection of habitat by animals. Mapping the functional properties of vegetation that influence predation risk (e.g., concealment and visibility) across landscapes can be challenging. Traditional ground-based measures of predation risk are location specific and limited in spatial resolution. We demonstrate the benefits of terrestrial laser scanning (TLS) to map the properties of vegetation structure that shape fearscapes. We used TLS data to estimate the concealment of prey from multiple vantage points, representing predator sightlines, as well as the visibility of potential predators from the locations of prey. TLS provides a comprehensive data set that allows an exploration of how habitat changes may affect prey and predators. Together with other remotely sensed imagery, TLS could facilitate the scaling up of fearscape analyses to promote the management and restoration of landscapes
Location of studies and evidence of effects of herbivory on Arctic vegetation: a systematic map
Background: Herbivores modify the structure and function of tundra ecosystems. Understanding their impacts is necessary to assess the responses of these ecosystems to ongoing environmental changes. However, the effects of herbivores on plants and ecosystem structure and function vary across the Arctic. Strong spatial variation in herbivore effects implies that the results of individual studies on herbivory depend on local conditions, i.e., their ecological context. An important first step in assessing whether generalizable conclusions can be produced is to identify the existing studies and assess how well they cover the underlying environmental conditions across the Arctic. This systematic map aims to identify the ecological contexts in which herbivore impacts on vegetation have been studied in the Arctic. Specifically, the primary question of the systematic map was: “What evidence exists on the effects of herbivores on Arctic vegetation?”. Methods: We used a published systematic map protocol to identify studies addressing the effects of herbivores on Arctic vegetation. We conducted searches for relevant literature in online databases, search engines and specialist websites. Literature was screened to identify eligible studies, defined as reporting primary data on herbivore impacts on Arctic plants and plant communities. We extracted information on variables that describe the ecological context of the studies, from the studies themselves and from geospatial data. We synthesized the findings narratively and created a Shiny App where the coded data are searchable and variables can be visually explored. Review findings: We identified 309 relevant articles with 662 studies (representing different ecological contexts or datasets within the same article). These studies addressed vertebrate herbivory seven times more often than invertebrate herbivory. Geographically, the largest cluster of studies was in Northern Fennoscandia. Warmer and wetter parts of the Arctic had the largest representation, as did coastal areas and areas where the increase in temperature has been moderate. In contrast, studies spanned the full range of ecological context variables describing Arctic vertebrate herbivore diversity and human population density and impact. Conclusions: The current evidence base might not be sufficient to understand the effects of herbivores on Arctic vegetation throughout the region, as we identified clear biases in the distribution of herbivore studies in the Arctic and a limited evidence base on invertebrate herbivory. In particular, the overrepresentation of studies in areas with moderate increases in temperature prevents robust generalizations about the effects of herbivores under different climatic scenarios
Location of studies and evidence of effects of herbivory on Arctic vegetation : a systematic map
Background: Herbivores modify the structure and function of tundra ecosystems. Understanding their impacts is necessary to assess the responses of these ecosystems to ongoing environmental changes. However, the effects of herbivores on plants and ecosystem structure and function vary across the Arctic. Strong spatial variation in herbivore effects implies that the results of individual studies on herbivory depend on local conditions, i.e., their ecological context. An important first step in assessing whether generalizable conclusions can be produced is to identify the existing studies and assess how well they cover the underlying environmental conditions across the Arctic. This systematic map aims to identify the ecological contexts in which herbivore impacts on vegetation have been studied in the Arctic. Specifically, the primary question of the systematic map was: "What evidence exists on the effects of herbivores on Arctic vegetation?". Methods: We used a published systematic map protocol to identify studies addressing the effects of herbivores on Arctic vegetation. We conducted searches for relevant literature in online databases, search engines and specialist websites. Literature was screened to identify eligible studies, defined as reporting primary data on herbivore impacts on Arctic plants and plant communities. We extracted information on variables that describe the ecological context of the studies, from the studies themselves and from geospatial data. We synthesized the findings narratively and created a Shiny App where the coded data are searchable and variables can be visually explored. Review findings We identified 309 relevant articles with 662 studies (representing different ecological contexts or datasets within the same article). These studies addressed vertebrate herbivory seven times more often than invertebrate herbivory. Geographically, the largest cluster of studies was in Northern Fennoscandia. Warmer and wetter parts of the Arctic had the largest representation, as did coastal areas and areas where the increase in temperature has been moderate. In contrast, studies spanned the full range of ecological context variables describing Arctic vertebrate herbivore diversity and human population density and impact. Conclusions: The current evidence base might not be sufficient to understand the effects of herbivores on Arctic vegetation throughout the region, as we identified clear biases in the distribution of herbivore studies in the Arctic and a limited evidence base on invertebrate herbivory. In particular, the overrepresentation of studies in areas with moderate increases in temperature prevents robust generalizations about the effects of herbivores under different climatic scenarios.Peer reviewe
Can the intake of antiparasitic secondary metabolites explain the low prevalence of hemoparasites among wild Psittaciformes?
Background: Parasites can exert selection pressure on their hosts through effects on survival, on reproductive success, on sexually selected ornament, with important ecological and evolutionary consequences, such as changes in population viability. Consequently, hemoparasites have become the focus of recent avian studies. Infection varies significantly among taxa. Various factors might explain the differences in infection among taxa, including habitat, climate, host density, the presence of vectors, life history and immune defence. Feeding behaviour can also be relevant both through increased exposure to vectors and consumption of secondary metabolites with preventative or therapeutic effects that can reduce parasite load. However, the latter has been little investigated. Psittaciformes (parrots and cockatoos) are a good model to investigate these topics, as they are known to use biological control against ectoparasites and to feed on toxic food. We investigated the presence of avian malaria parasites (Plasmodium), intracellular haemosporidians (Haemoproteus, Leucocytozoon), unicellular flagellate protozoans (Trypanosoma) and microfilariae in 19 Psittaciformes species from a range of habitats in the Indo-Malayan, Australasian and Neotropical regions. We gathered additional data on hemoparasites in wild Psittaciformes from the literature. We considered factors that may control the presence of hemoparasites in the Psittaciformes, compiling information on diet, habitat, and climate. Furthermore, we investigated the role of diet in providing antiparasitic secondary metabolites that could be used as self-medication to reduce parasite load.
Results: We found hemoparasites in only two of 19 species sampled. Among them, all species that consume at least one food item known for its secondary metabolites with antimalarial, trypanocidal or general antiparasitic properties, were free from hemoparasites. In contrast, the infected parrots do not consume food items with antimalarial or even general antiparasitic properties. We found that the two infected species in this study consumed omnivorous diets. When we combined our data with data from studies previously investigating blood parasites in wild parrots, the positive relationship between omnivorous diets and hemoparasite infestation was confirmed. Individuals from open habitats were less infected than those from forests.
Conclusions: The consumption of food items known for their secondary metabolites with antimalarial, trypanocidal or general antiparasitic properties, as well as the higher proportion of infected species among omnivorous parrots, could explain the low prevalence of hemoparasites reported in many vertebrates
The Balancing Act of Foraging: Mammalian Herbivores Trade-Off Multiple Risks When Selecting Food Patches
Animals face multiple risks while foraging such as the risk of acquiring inadequate energy from food and the risk of predation. We evaluated how two sympatric rabbits (pygmy rabbits, Brachylagus idahoensis, and mountain cottontail rabbits, Sylvilagus nuttallii) that differ in size, use of burrows, and habitat specialization in the sagebrush-steppe of western North America respond to different types and levels of perceived risks (i.e., fitness cost × probability of occurrence), including fiber and toxins in food, exposure to predation, and distance from a refuge. We measured food intake by the rabbits at paired food patches that varied in these risks and used the method of paired comparisons to create a relative ranking of habitat cues, which revealed an animal’s perceived risk on a single scale representing an integrated response to a variety of risks. Pygmy rabbits perceived exposure to predation risk and distance from a burrow as riskier than did cottontails, whereas cottontails perceived dietary toxin as riskier. Pygmy rabbits consumed lower quality food, containing higher fiber or toxins, thereby avoided feeding in exposed patches or traveling far from their burrow to forage. In contrast, cottontails fed in exposed patches and traveled farther from the burrow to obtain higher quality food. We have shown how risks can be integrated into a single model that allows animals to reveal their perceptions of risks on a single scale that can be used to create a spatially explicit landscape of risk
Review: Using physiologically based models to predict population responses to phytochemicals by wild vertebrate herbivores
© The Animal Consortium 2018. To understand how foraging decisions impact individual fitness of herbivores, nutritional ecologists must consider the complex in vivo dynamics of nutrient-nutrient interactions and nutrient-toxin interactions associated with foraging. Mathematical modeling has long been used to make foraging predictions (e.g. optimal foraging theory) but has largely been restricted to a single currency (e.g. energy) or using simple indices of nutrition (e.g. fecal nitrogen) without full consideration of physiologically based interactions among numerous co-ingested phytochemicals. Here, we describe a physiologically based model (PBM) that provides a mechanistic link between foraging decisions and demographic consequences. Including physiological mechanisms of absorption, digestion and metabolism of phytochemicals in PBMs allows us to estimate concentrations of ingested and interacting phytochemicals in the body. Estimated phytochemical concentrations more accurately link intake of phytochemicals to changes in individual fitness than measures of intake alone. Further, we illustrate how estimated physiological parameters can be integrated with the geometric framework of nutrition and into integral projection models and agent-based models to predict fitness and population responses of vertebrate herbivores to ingested phytochemicals. The PBMs will improve our ability to understand the foraging decisions of vertebrate herbivores and consequences of those decisions and may help identify key physiological mechanisms that underlie diet-based ecological adaptations
Near-Infrared Spectroscopy Aids Ecological Restoration by Classifying Variation of Taxonomy and Phenology of a Native Shrub
Plant communities are composed of complex phenotypes that not only differ among taxonomic groups and habitats but also change over time within a species. Restoration projects (e.g. translocations and reseeding) can introduce new functional variation in plants, which further diversifies phenotypes and complicates our ability to identify locally adaptive phenotypes for future restoration. Near-infrared spectroscopy (NIRS) offers one approach to detect the chemical phenotypes that differentiate plant species, populations, and phenological states of individual plants over time. We use sagebrush (Artemisia spp.) as a case study to test the accuracy by which NIRS can classify variation within taxonomy and phenology of a plant that is extensively managed and restored. Our results demonstrated that NIRS can accurately classify species of sagebrush within a study site (75–96%), populations of sagebrush within a subspecies (99%), annual phenology within a population (\u3e99%), and seasonal phenology within individual plants (\u3e97%). Low classification accuracy by NIRS in some sites may reflect heterogeneity associated with natural hybridization, translocation of nonlocal seed sources from past restoration, or complex gene-by-environment interactions. Advances in our ability to detect and interpret spectral signals from plants may improve both the selection of seed sources for targeted conservation and the capacity to monitor long-term changes in vegetation