814 research outputs found

    Developing a method for the collection and analysis of burnt remains for the detection and identification of ignitable liquid residues using body bags, dynamic headspace sampling, and TD-GC×GC-TOFMS

    Full text link
    © 2018 by the authors. Licensee MDPI, Basel, Switzerland. In cases of suspected arson, a body may be intentionally burnt to cause loss of life, dispose of remains, or conceal identification. A primary focus of a fire investigation, particularly involving human remains, is to establish the cause of the fire; this often includes the forensic analysis of fire debris for the detection of ignitable liquid residues (ILRs). Commercial containers for the collection of fire debris evidence include metal cans, glass jars, and polymer/nylon bags of limited size. This presents a complication in cases where the fire debris consists of an intact, or partially intact, human cadaver. This study proposed the use of a body bag as an alternative sampling container. A method was developed and tested for the collection and analysis of ILRs from burnt porcine remains contained within a body bag using dynamic headspace sampling (using an Easy-VOCℱ hand-held manually operated grab-sampler and stainless steel sorbent tubes containing Tenax TA) followed by thermal desorption comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry (TD-GC×GC-TOFMS). The results demonstrated that a body bag containing remains burnt with gasoline tested positive for the presence of gasoline, while blank body bag controls and a body bag containing remains burnt without gasoline tested negative. The proposed method permits the collection of headspace samples from burnt remains before the remains are removed from the crime scene, limiting the potential for contamination and the loss of volatiles during transit and storage

    Examination of adipocere formation in a cold water environment

    Full text link
    Adipocere is a late-stage postmortem decomposition product that forms from the lipids present in soft tissue. Its formation in aquatic environments is typically related to the presence of a moist, warm, anaerobic environment, and the effect of decomposer microorganisms. The ideal temperature range for adipocere formation is considered to be 21-45°C and is correlated to the optimal conditions for bacterial growth and enzymatic release. However, adipocere formation has been reported in cooler aquatic environments at considerable depths. This study aimed to investigate the chemical process of adipocere formation in a cold freshwater environment in Lake Ontario, Canada. Porcine tissue was used as a human tissue analogue and submerged at two depths (i.e., 10 and 30 feet) in the trophogenic zone of the lake. Samples were collected at monthly postmortem submersion intervals and analysed using diffuse reflectance infrared Fourier transform spectroscopy to provide a qualitative profile of the lipid degradation and adipocere formation process. Early stage adipocere formation occurred rapidly in the cold water environment and proceeded to intermediate stage adipocere formation by the second month of submersion. However, further adipocere formation was inhibited in the third month of the study when temperatures approached the freezing point. The depth of submergence did not influence the chemical conversion process as similar stages of adipocere formation occurred at both depths investigated. The study demonstrated that adipocere can form rapidly, even on small amounts of soft tissue, which may be representative of dismembered or disarticulated limbs discovered in an aquatic environment. © 2010 Springer-Verlag

    Achieving a near-theoretical maximum in peak capacity gain for the forensic analysis of ignitable liquids using GC×GC-TOFMS

    Full text link
    © 2016 by the authors; licensee MDPI, Basel, Switzerland. At present, gas chromatography–quadrupole mass spectrometry (GC-qMS) is considered the gold standard amongst analytical techniques for fire debris analysis in forensic laboratories worldwide, specifically for the detection and classification of ignitable liquids. Due to the highly complex and unpredictable nature of fire debris, traditional one-dimensional GC-qMS often produces chromatograms that display an unresolved complex mixture containing only trace levels of the ignitable liquid among numerous background pyrolysis products that interfere with pattern recognition necessary to verify the presence and identification of the ignitable liquid. To combat these challenges, this study presents a method optimized to achieve a near-theoretical maximum in peak capacity gain using comprehensive two-dimensional gas chromatography (GC×GC) coupled to time-of-flight mass spectrometry (TOFMS) for the forensic analysis of petroleum-based ignitable liquids. An overall peak capacity gain of ~9.3 was achieved, which is only ~17% below the system’s theoretical maximum of ~11.2. In addition, through the preservation of efficient separation in the first dimension and optimal stationary phase selection in the second dimension, the presented method demonstrated improved resolution, enhanced sensitivity, increased peak detectability and structured chromatograms well-suited for the rapid classification of ignitable liquids. As a result, the method generated extremely detailed fingerprints of petroleum-based ignitable liquids including gasoline, kerosene, mineral spirits and diesel fuel. The resultant data was also shown to be amenable to chromatographic alignment and multivariate statistical analysis for future evaluation of chemometric models for the rapid, objective and automated classification of ignitable liquids in fire debris extracts

    Seasonal variation of fatty acid profiles from textiles associated with decomposing pig remains in a temperate Australian environment

    Full text link
    © 2018 Elsevier B.V. A methodology to examine the human post-mortem decomposition process has been developed through the monitoring of chemical changes to decomposition fluids absorbed by clothing. Model surface burials using clothed pigs were established during summer and winter seasons in a temperate region of Australia. Three clothing materials were investigated: cotton, polyester and cotton-polyester. Lipid decomposition products were extracted from the textiles and the fatty acid composition measured as a function of burial time using gas chromatography – mass spectrometry (GC-MS). Two derivatisation methods for the fatty acids were compared to establish the most effective approach and it was established that a trimethylsilylation derivatisation method is the optimal preparation technique. The summer trials revealed two rates of transformation of fatty acids from unsaturated to saturated forms, with a faster rate of change occurring earlier in the trials. A different pattern of behaviour was observed for the fatty acids detected during the winter trial, with a decrease in saturated fatty acids initially observed, followed by the conversion of unsaturated to saturated fatty acids until the end of trial. The initial change observed during the winter trial was attributed to a dehydrogenation process caused by microbiological enyzymatic activity. The study has demonstrated the feasibility of examining lipid decomposition products collected in clothing from burials to provide insight into the conditions and length of burial

    Establishing the volatile profile of pig carcasses as analogues for human decomposition during the early postmortem period

    Get PDF
    © 2016 The Authors. Following a mass disaster, it is important that victims are rapidly located as the chances of survival decrease greatly after approximately 48 h. Urban search and rescue (USAR) teams may use a range of tools to assist their efforts but detector dogs still remain one of the most effective search tools to locate victims of mass disasters. USAR teams can choose to deploy human scent dogs (trained to locate living victims) or human remains detection (HRD) dogs (trained to locate deceased victims). However, little is known about the variation between live human scent and postmortem human remains scent and the timeframe during which one type of scent transitions to the other. The aim of the current study was to measure the change in the scent profile of human decomposition analogues during the first 72 h postmortem by measuring the volatile organic compounds (VOCs) that comprise the odour. Three pig carcasses (Sus scrofa domesticus L.) were placed on a soil surface and allowed to decompose under natural conditions. Decomposition odour was sampled frequently up to 75 h postmortem and analysed using comprehensive two-dimensional gas chromatography - time-of-flight mass spectrometry (GC×GC-TOFMS). A total of 105 postmortem VOCs were identified during the early postmortem period. The VOC profile during the early postmortem period was highly dynamic, changing both hourly and daily. A transition period was observed after 43 h postmortem, where the VOC profile appeared to shift from a distinct antemortem odour to a more generalised postmortem odour. These findings are important in informing USAR teams and their use of detector dogs for disaster victim recovery

    Degradation patterns of natural and synthetic textiles on a soil surface during summer and winter seasons studied using ATR-FTIR spectroscopy

    Full text link
    © 2017 Elsevier B.V. Textiles are a valuable source of forensic evidence and the nature and condition of textiles collected from a crime scene can assist investigators in determining the nature of the death and aid in the identification of the victim. Until now, much of the knowledge of textile degradation in forensic contexts has been based on the visual inspection of material collected from soil environments. The purpose of the current study was to investigate the potential of a more quantitative approach to the understanding of forensic textile degradation through the application of infrared spectroscopy. Degradation patterns of natural and synthetic textile materials as they were subjected to a natural outdoor environment in Australia were investigated. Cotton, polyester and polyester – cotton blend textiles were placed on a soil surface during the summer and winter seasons and were analysed over periods 1 and 1.5 years, respectively, and examined using attenuated total reflectance (ATR) spectroscopy. Statistical analysis of the spectral data obtained for the cotton material correlated with visual degradation and a difference in the onset of degradation between the summer and winter season was revealed. The synthetic material did not show any signs of degradation either visually or statistically throughout the experimental period and highlighted the importance of material type in terms of preservation. The cotton section from the polyester – cotton blend samples was found to behave in a similar manner to that of the 100% cotton samples, however principal component analysis (PCA) demonstrated that the degradation patterns were less distinct in both the summer and winter trial for the blend samples. These findings indicated that the presence of the synthetic material may have inhibited the degradation of the natural material. The use of statistics to analyse the spectral data obtained for textiles of forensic interest provides a better foundation for the interpretation of the data obtained using ATR-FTIR spectroscopy, and has provided insight into textile degradation processes relevant to a soil environment

    Socioeconomic inequalities in attitudes towards cancer: an international cancer benchmarking partnership study.

    Get PDF
    Socioeconomic status (SES) differences in attitudes towards cancer have been implicated in the differential screening uptake and the timeliness of symptomatic presentation. However, the predominant emphasis of this work has been on cancer fatalism, and many studies focus on specific community subgroups. This study aimed to assess SES differences in positive and negative attitudes towards cancer in UK adults. A population-based sample of UK adults (n=6965, age≄50 years) completed the Awareness and Beliefs about Cancer scale, including six belief items: three positively framed (e.g. 'Cancer can often be cured') and three negatively framed (e.g. 'A cancer diagnosis is a death sentence'). SES was indexed by education. Analyses controlled for sex, ethnicity, marital status, age, self-rated health, and cancer experience. There were few education-level differences for the positive statements, and overall agreement was high (all>90%). In contrast, there were strong differences for negative statements (all Ps<0.001). Among respondents with lower education levels, 57% agreed that 'treatment is worse than cancer', 27% that cancer is 'a death sentence' and 16% 'would not want to know if I have cancer'. Among those with university education, the respective proportions were 34, 17 and 6%. Differences were not explained by cancer experience or health status. In conclusion, positive statements about cancer outcomes attract near-universal agreement. However, this optimistic perspective coexists alongside widespread fears about survival and treatment, especially among less-educated groups. Health education campaigns targeting socioeconomically disadvantaged groups might benefit from a focus on reducing negative attitudes, which is not necessarily achieved by promoting positive attitudes

    A comparison of human and pig decomposition rates and odour profiles in an Australian environment

    Full text link
    © 2018, © 2018 Australian Academy of Forensic Sciences. Cadaver-detection dogs are trained to locate victim remains; however, their training is challenging owing to limited access to human remains. Animal analogues, such as pigs, are typically used as alternative training aids. This project aimed to compare the visual decomposition and volatile organic compound (VOC) profile of human and pig remains in an Australian environment, to determine the suitability of pig remains as human odour analogues for cadaver-detection dog training. Four human cadavers and four pig carcasses were placed in an outdoor environment at the Australian Facility for Taphonomic Experimental Research (AFTER) across two seasons. Decomposition was monitored progressively in summer and winter. VOCs were collected onto sorbent tubes and analysed using comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry. Visual observations highlighted the differences in decomposition rates, with pig remains progressing through all stages of decomposition, and human remains undergoing differential decomposition and mummification. Chemical and statistical analysis highlighted variations in the composition and abundance of VOCs over time between the odour profiles. This study concluded that the visual decomposition and VOC profile of pig and human remains was dissimilar. However, in cooler conditions the results from each species became more comparable, especially during the early stages of decomposition

    Detecting grave sites from surface anomalies: A longitudinal study in an Australian woodland.

    Full text link
    Forensic investigations of single and mass graves often use surface anomalies, including changes to soil and vegetation conditions, to identify potential grave locations. Though numerous resources describe surface anomalies in grave detection, few studies formally investigate the rate at which the surface anomalies return to a natural state; hence, the period the grave is detectable to observers. Understanding these processes can provide guidance as to when ground searches will be an effective strategy for locating graves. We studied three experimental graves and control plots in woodland at the Australian Facility for Taphonomic Experimental Research (Sydney, Australia) to monitor the rate at which surface anomalies change following disturbance. After three years, vegetation cover on all grave sites and control plots had steadily increased but remained substantially less than undisturbed surroundings. Soil anomalies (depressions and cracking) were more pronounced at larger grave sites versus the smaller grave and controls, with leaf litterfall rendering smaller graves difficult to detect beyond 20 months. Similar results were observed in two concurrent burial studies, except where accelerated revegetation appeared to be influenced by mummified remains. Extreme weather events such as heatwaves and heavy rainfall may prolong the detection window for grave sites by hindering vegetation establishment. Observation of grave-indicator vegetation, which exhibited abnormally strong growth 10 months after commencement, suggests that different surface anomalies may have different detection windows. Our findings are environment-specific, but the concepts are applicable globally
    • 

    corecore