260 research outputs found
4pi Models of CMEs and ICMEs
Coronal mass ejections (CMEs), which dynamically connect the solar surface to
the far reaches of interplanetary space, represent a major anifestation of
solar activity. They are not only of principal interest but also play a pivotal
role in the context of space weather predictions. The steady improvement of
both numerical methods and computational resources during recent years has
allowed for the creation of increasingly realistic models of interplanetary
CMEs (ICMEs), which can now be compared to high-quality observational data from
various space-bound missions. This review discusses existing models of CMEs,
characterizing them by scientific aim and scope, CME initiation method, and
physical effects included, thereby stressing the importance of fully 3-D
('4pi') spatial coverage.Comment: 14 pages plus references. Comments welcome. Accepted for publication
in Solar Physics (SUN-360 topical issue
3D evolution of a filament disappearance event observed by STEREO
A filament disappearance event was observed on 22 May 2008 during our recent
campaign JOP 178. The filament, situated in the southern hemisphere, showed
sinistral chirality consistent with the hemispheric rule. The event was well
observed by several observatories in particular by THEMIS. One day before the
disappearance, H observations showed up and down flows in adjacent
locations along the filament, which suggest plasma motions along twisted flux
rope. THEMIS and GONG observations show shearing photospheric motions leading
to magnetic flux canceling around barbs. STEREO A, B spacecraft with separation
angle 52.4 degrees, showed quite different views of this untwisting flux rope
in He II 304 \AA\ images. Here, we reconstruct the 3D geometry of the filament
during its eruption phase using STEREO EUV He II 304 \AA\ images and find that
the filament was highly inclined to the solar normal. The He II 304 \AA\ movies
show individual threads, which oscillate and rise to an altitude of about 120
Mm with apparent velocities of about 100 km s, during the rapid
evolution phase. Finally, as the flux rope expands into the corona, the
filament disappears by becoming optically thin to undetectable levels. No CME
was detected by STEREO, only a faint CME was recorded by LASCO at the beginning
of the disappearance phase at 02:00 UT, which could be due to partial filament
eruption. Further, STEREO Fe XII 195 \AA\ images showed bright loops beneath
the filament prior to the disappearance phase, suggesting magnetic reconnection
below the flux rope
Anisotropy in the Hubble constant as observed in the HST Extragalactic Distance Scale Key Project results
Based on general relativity, it can be argued that deviations from a uniform
Hubble flow should be thought of as variations in the Universe's expansion
velocity field, rather than being thought of as peculiar velocities with
respect to a uniformly expanding space. The aim of this paper is to use the
observed motions of galaxies to map out variations in the Universe's expansion,
and more importantly, to investigate whether real variations in the Hubble
expansion are detectable given the observational uncertainties. All-sky maps of
the observed variation in the expansion are produced using measurements
obtained along specific lines-of-sight and smearing them across the sky using a
Gaussian profile. A map is produced for the final results of the HST
Extragalactic Distance Scale Key Project for the Hubble constant, a comparison
map is produced from a set of essentially independent data, and Monte Carlo
techniques are used to analyse the statistical significance of the variation in
the maps. A statistically significant difference in expansion rate of 9
km/s/Mpc is found to occur across the sky. Comparing maps of the sky at
different distances appears to indicate two distinct sets of extrema with even
stronger statistically significant variations. Within our supercluster,
variations tend to occur near the supergalactic plane, and beyond our
supercluster, variations tend to occur away from the supergalactic plane.
Comparison with bulk flow studies shows some concordance, yet also suggests the
bulk flow studies may suffer confusion, failing to discern the influence of
multiple perturbations.Comment: 23 pages, 5 figures, to be published in New Astronom
A Helicity-Based Method to Infer the CME Magnetic Field Magnitude in Sun and Geospace: Generalization and Extension to Sun-Like and M-Dwarf Stars and Implications for Exoplanet Habitability
Patsourakos et al. (Astrophys. J. 817, 14, 2016) and Patsourakos and
Georgoulis (Astron. Astrophys. 595, A121, 2016) introduced a method to infer
the axial magnetic field in flux-rope coronal mass ejections (CMEs) in the
solar corona and farther away in the interplanetary medium. The method, based
on the conservation principle of magnetic helicity, uses the relative magnetic
helicity of the solar source region as input estimates, along with the radius
and length of the corresponding CME flux rope. The method was initially applied
to cylindrical force-free flux ropes, with encouraging results. We hereby
extend our framework along two distinct lines. First, we generalize our
formalism to several possible flux-rope configurations (linear and nonlinear
force-free, non-force-free, spheromak, and torus) to investigate the dependence
of the resulting CME axial magnetic field on input parameters and the employed
flux-rope configuration. Second, we generalize our framework to both Sun-like
and active M-dwarf stars hosting superflares. In a qualitative sense, we find
that Earth may not experience severe atmosphere-eroding magnetospheric
compression even for eruptive solar superflares with energies ~ 10^4 times
higher than those of the largest Geostationary Operational Environmental
Satellite (GOES) X-class flares currently observed. In addition, the two
recently discovered exoplanets with the highest Earth-similarity index, Kepler
438b and Proxima b, seem to lie in the prohibitive zone of atmospheric erosion
due to interplanetary CMEs (ICMEs), except when they possess planetary magnetic
fields that are much higher than that of Earth.Comment: http://adsabs.harvard.edu/abs/2017SoPh..292...89
How Many CMEs Have Flux Ropes? Deciphering the Signatures of Shocks, Flux Ropes, and Prominences in Coronagraph Observations of CMEs
We intend to provide a comprehensive answer to the question on whether all
Coronal Mass Ejections (CMEs) have flux rope structure. To achieve this, we
present a synthesis of the LASCO CME observations over the last sixteen years,
assisted by 3D MHD simulations of the breakout model, EUV and coronagraphic
observations from STEREO and SDO, and statistics from a revised LASCO CME
database. We argue that the bright loop often seen as the CME leading edge is
the result of pileup at the boundary of the erupting flux rope irrespective of
whether a cavity or, more generally, a 3-part CME can be identified. Based on
our previous work on white light shock detection and supported by the MHD
simulations, we identify a new type of morphology, the `two-front' morphology.
It consists of a faint front followed by diffuse emission and the bright
loop-like CME leading edge. We show that the faint front is caused by density
compression at a wave (or possibly shock) front driven by the CME. We also
present high-detailed multi-wavelength EUV observations that clarify the
relative positioning of the prominence at the bottom of a coronal cavity with
clear flux rope structure. Finally, we visually check the full LASCO CME
database for flux rope structures. In the process, we classify the events into
two clear flux rope classes (`3-part', `Loop'), jets and outflows (no clear
structure). We find that at least 40% of the observed CMEs have clear flux rope
structures. We propose a new definition for flux rope CMEs (FR-CMEs) as a
coherent magnetic, twist-carrying coronal structure with angular width of at
least 40 deg and able to reach beyond 10 Rsun which erupts on a time scale of a
few minutes to several hours. We conclude that flux ropes are a common
occurrence in CMEs and pose a challenge for future studies to identify CMEs
that are clearly not FR-CMEs.Comment: 26 pages, 9 figs, to be published in Solar Physics Topical Issue
"Flux Rope Structure of CMEs
Recent Advances in Understanding Particle Acceleration Processes in Solar Flares
We review basic theoretical concepts in particle acceleration, with
particular emphasis on processes likely to occur in regions of magnetic
reconnection. Several new developments are discussed, including detailed
studies of reconnection in three-dimensional magnetic field configurations
(e.g., current sheets, collapsing traps, separatrix regions) and stochastic
acceleration in a turbulent environment. Fluid, test-particle, and
particle-in-cell approaches are used and results compared. While these studies
show considerable promise in accounting for the various observational
manifestations of solar flares, they are limited by a number of factors, mostly
relating to available computational power. Not the least of these issues is the
need to explicitly incorporate the electrodynamic feedback of the accelerated
particles themselves on the environment in which they are accelerated. A brief
prognosis for future advancement is offered.Comment: This is a chapter in a monograph on the physics of solar flares,
inspired by RHESSI observations. The individual articles are to appear in
Space Science Reviews (2011
The Physical Processes of CME/ICME Evolution
As observed in Thomson-scattered white light, coronal mass ejections (CMEs) are manifest as large-scale expulsions of plasma magnetically driven from the corona in the most energetic eruptions from the Sun. It remains a tantalizing mystery as to how these erupting magnetic fields evolve to form the complex structures we observe in the solar wind at Earth. Here, we strive to provide a fresh perspective on the post-eruption and interplanetary evolution of CMEs, focusing on the physical processes that define the many complex interactions of the ejected plasma with its surroundings as it departs the corona and propagates through the heliosphere. We summarize the ways CMEs and their interplanetary CMEs (ICMEs) are rotated, reconfigured, deformed, deflected, decelerated and disguised during their journey through the solar wind. This study then leads to consideration of how structures originating in coronal eruptions can be connected to their far removed interplanetary counterparts. Given that ICMEs are the drivers of most geomagnetic storms (and the sole driver of extreme storms), this work provides a guide to the processes that must be considered in making space weather forecasts from remote observations of the corona.Peer reviewe
- …