9 research outputs found

    Study of a Solution with COTS for the LHCb Calorimeter Upgrade

    Get PDF
    AbstractWe present a solution made out of Components Out of Shelf (COTS) for the analog processing of the signal of the LHCb calorimeters in the framework of the foreseen upgrade of the detector. The present proposal is based on the current functional solution, yet, to meet the stringent noise requirements, a number of modifications are proposed. Preliminary results on the prototype boards show promising results

    FIT: the scintillating fiber tracker of the HERD space mission

    No full text

    The Plastic Scintillator Detector of the HERD space mission

    No full text
    The High Energy cosmic-Radiation (HERD) detector is one of the prominent space-borne instruments to be installed on-board the Chinese Space Station (CSS), around 2027. Primary scientific goals regarding this initiative include: precise measurements of cosmic ray (CR) energy spectra and mass composition, at energies up to the PeV range; contributions to high energy gamma-ray astronomy and transient studies; as well as indirect searches for Dark Matter (DM) particles via their possible annihilation/decay to detectable products. HERD is configured to accept incident particles from both its top and four lateral sides. Owing to its pioneering design, an order of magnitude increase in acceptance is foreseen, with respect to previous and ongoing experiments. The Plastic Scintillator Detector (PSD) constitutes an important sub-detector of HERD, particularly aimed towards anti-coincidence (discriminating incident photons from charged particles), while providing precise charge measurement of incoming cosmic-ray nuclei in a range of Z = 1-26. Main requirements concerning its design, include: high detection efficiency, broad dynamic range and good energy resolution. In order to select the optimal layout, two geometries are currently under investigation: one based on long scintillator bars and the other on square tiles, with both layouts being readout by Silicon Photomultipliers (SiPMs). Ongoing activities and future plans regarding the HERD PSD will be presented in this work. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0

    The High Energy cosmic-Radiation Detector (HERD) Trigger System

    No full text
    The High Energy cosmic-Radiation Detection (HERD) facility is a next generation spaceborne detector to be installed onboard the Chinese Space Station for about 10 years. HERD will address major problems in fundamental physics and astrophysics, providing precise measurements of charged-cosmic rays up to PeV energies, performing indirect searches for dark matter in the electron spectrum up to few tens of TeV and monitoring the gamma-ray skymap for surveys and transient searches. HERD is composed of a 3D imaging calorimeter (CALO) surrounded by a scintillating fiber tracker (FIT), a plastic scintillator detector (PSD) and a silicon charge detector (SCD). In addition, a transition radiation detector (TRD) is placed on a lateral side to provide accurate energy calibration. Based on this innovative design, the effective geometric factor of HERD will be one order of magnitud larger than that of current space-based detectors. The HERD trigger strategy is designed to accomplish the scientific goals of the mission, and is based on trigger definitions that rely on the energy deposited in CALO and the PSD. The trigger performances are evaluated using a detailed Monte Carlo simulation that includes the latest HERD geometry. In addition, alternative trigger definitions based on the event topology can be established thanks to the photodiode readout of CALO crystals. The feasibility of these topological triggers is also investigated and presented

    Gamma-ray performance study of the HERD payload

    No full text
    The High Energy cosmic-Radiation Detection (HERD) facility has been proposed as a space astronomy payload onboard the future China's Space Station. HERD is planned for operation starting around 2027 for about 10 years In addition to the unprecedented sensitivity for dark matter searches and cosmic-ray measurements up to the knee energy, it should perform gamma-ray monitoring and full sky survey from few hundred MeV up to tens of TeV. We present the first study of the HERD gamma-ray performance obtained with full simulations of the whole detector geometry. HERD will be a cubic detector composed with 5 active faces. We present a study conducted inside the HERD analysis software package, which includes a detailed description of the detector materials. In this work we present the HERD effective area, the point spread function and the resulting gamma-ray sensitivity. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0

    Design and expected performances of the large acceptance calorimeter for the HERD space mission

    No full text
    The High Energy cosmic-Radiation Detection (HERD) is a future space experiment which will be installed on the China’s Space Station around 2027. The main goal of the experiment is the measurement of cosmic rays up to energies which are not explored by the instruments currently operating in space, in particular protons with energies up to PeV, nuclei up to hundreds of TeV per nucleon and electrons up to tens of TeV. HERD will consist of silicon charge detectors, anti-coincidence scintillators, scintillating fiber trackers, a transition radiation detector and a calorimeter. The latter is a homogeneous, deep, 3D segmented calorimeter made of about 7500 LYSO cubic crystals: thanks to this innovative design, it will achieve large acceptance, good energy resolution and excellent electron/proton discrimination. In order to increase both energy calibration capabilities and redundancy of the instrument, the LYSO scintillation light will be read-out by two independent systems: the first is made of wave-length shifting fibers coupled with imaged intensified CMOS cameras, and the second one consists of photodiodes with different active areas connected to a custom front-end electronics. Both read-out systems are designed to have a large dynamic range, up to 107, and a low power consumption. The design of the calorimeter is validated by several Monte Carlo simulations and beam test results obtained with detector prototypes. In this paper we describe the anticipated performances of the calorimeter and the current status of the double read-out system, and we discuss the recent developments of both the HERD prototype and the flight model design. © Copyright owned by the author(s)

    DarkSide-20k Preliminary Design Report: The Global Argon Dark Matter Collaboration

    No full text

    DarkSide-50 results and the future liquid argon dark matter program

    No full text
    DarkSide uses a dual-phase Liquid Argon Time Projection Chamber (TPC) to search for WIMP dark matter. The paper will present the latest result on the search for low mass (MW IMP < 20 Gev/c2) and high mass (MW IMP > 100 Gev/c2) WIMPs from the current experiment, DarkSide-50, running since mid 2015 a 50-kg-active-mass TPC, filled with argon from an underground source. The next stage of the DarkSide program will be a new generation experiment involving a global collaboration from all the current Argon based experiments. DarkSide-20k, is designed as a 20-tonne fiducial mass TPC with SiPM based photosensors, expected to be free of any background for an exposure of >100 ton x years. Like its predecessor DarkSide-20k will be housed at the Gran Sasso (LNGS) underground laboratory, and it is expected to attain a WIMP-nucleon cross section exclusion sensitivity of 10−47 cm2 for a WIMP mass of 1 TeV /c2 in a 5 yr run. A subsequent objective, towards the end of the next decade, will be the construction of the ultimate detector, ARGO, with a 300 t fiducial mass to push the sensitivity to the neutrino floor region for high mass WIMPs. The combination of the three experiments, part of a single family, will cover completely the WIMP hypothesis from 1 GeV /c2 to several hundreds of TeV /c2 masses

    DarkSide-50 results and the future liquid argon dark matter program

    No full text
    DarkSide uses a dual-phase Liquid Argon Time Projection Chamber (TPC) to search for WIMP dark matter. The paper will present the latest result on the search for low mass (MW IMP 100 Gev/c2) WIMPs from the current experiment, DarkSide-50, running since mid 2015 a 50-kg-active-mass TPC, filled with argon from an underground source. The next stage of the DarkSide program will be a new generation experiment involving a global collaboration from all the current Argon based experiments. DarkSide-20k, is designed as a 20-tonne fiducial mass TPC with SiPM based photosensors, expected to be free of any background for an exposure of >100 ton x years. Like its predecessor DarkSide-20k will be housed at the Gran Sasso (LNGS) underground laboratory, and it is expected to attain a WIMP-nucleon cross section exclusion sensitivity of 10−47 cm2 for a WIMP mass of 1 TeV /c2 in a 5 yr run. A subsequent objective, towards the end of the next decade, will be the construction of the ultimate detector, ARGO, with a 300 t fiducial mass to push the sensitivity to the neutrino floor region for high mass WIMPs. The combination of the three experiments, part of a single family, will cover completely the WIMP hypothesis from 1 GeV /c2 to several hundreds of TeV /c2 masses
    corecore