1 research outputs found

    Seesaw mechanism in the sneutrino sector and its consequences

    Full text link
    The seesaw-extended MSSM provides a framework in which the observed light neutrino masses and mixing angles can be generated in the context of a natural theory for the TeV-scale. Sneutrino-mixing phenomena provide valuable tools for connecting the physics of neutrinos and supersymmetry. We examine the theoretical structure of the seesaw-extended MSSM, retaining the full complexity of three generations of neutrinos and sneutrinos. In this general framework, new flavor-changing and CP-violating sneutrino processes are allowed, and are parameterized in terms of two 3×33\times 3 matrices that respectively preserve and violate lepton number. The elements of these matrices can be bounded by analyzing the rate for rare flavor-changing decays of charged leptons and the one-loop contribution to neutrino masses. In the former case, new contributions arise in the seesaw extended model which are not present in the ordinary MSSM. In the latter case, sneutrino--antisneutrino mixing generates the leading correction at one-loop to neutrino masses, and could provide the origin of the observed texture of the light neutrino mass matrix. Finally, we derive general formulae for sneutrino--antisneutrino oscillations and sneutrino flavor-oscillations. Unfortunately, neither oscillation phenomena is likely to be observable at future colliders.Comment: 69 pages, 5 figures, uses axodraw.sty. Version accepted for publication in JHEP: some comments and one more Appendix with additional discussion added, references update
    corecore