1,509 research outputs found
Electric Charge Quantization
Experimentally it has been known for a long time that the electric charges of
the observed particles appear to be quantized. An approach to understanding
electric charge quantization that can be used for gauge theories with explicit
factors -- such as the standard model and its variants -- is
pedagogically reviewed and discussed in this article. This approach uses the
allowed invariances of the Lagrangian and their associated anomaly cancellation
equations. We demonstrate that charge may be de-quantized in the
three-generation standard model with massless neutrinos, because differences in
family-lepton--numbers are anomaly-free. We also review the relevant
experimental limits. Our approach to charge quantization suggests that the
minimal standard model should be extended so that family-lepton--number
differences are explicitly broken. We briefly discuss some candidate extensions
(e.g. the minimal standard model augmented by Majorana right-handed neutrinos).Comment: 18 pages, LaTeX, UM-P-92/5
On the sign of the neutrino asymmetry induced by active-sterile neutrino oscillations in the early Universe
We deal with the problem of the final sign of the neutrino asymmetry
generated by active-sterile neutrino oscillations in the Early Universe solving
the full momentum dependent quantum kinetic equations. We study the parameter
region . For a large
range of values the sign of the neutrino asymmetry is fixed
and does not oscillate. For values of mixing parameters in the region
, the neutrino asymmetry appears to undergo rapid
oscillations during the period where the exponential growth occurs. Our
numerical results indicate that the oscillations are able to change the
neutrino asymmetry sign. The sensitivity of the solutions and in particular of
the final sign of lepton number to small changes in the initial conditions
depends whether the number of oscillations is high enough. It is however not
possible to conclude whether this effect is induced by the presence of a
numerical error or is an intrinsic feature. As the amplitude of the statistical
fluctuations is much lower than the numerical error, our numerical analysis
cannot demonstrate the possibility of a chaotical generation of lepton domains.
In any case this possibility is confined to a special region in the space of
mixing parameters and it cannot spoil the compatibility of the
solution to the neutrino atmospheric data
obtained assuming a small mixing of the with an
neutrino.Comment: Typo's corrected, accepted for publication in Phys.Rev.
Solutions of the atmospheric, solar and LSND neutrino anomalies from TeV scale quark-lepton unification
There is a unique gauge model which
allows quarks and leptons to be unified at the TeV scale. It is already known
that the neutrino masses arise radiatively in the model and are naturally
light. We study the atmospheric, solar and LSND neutrino anomalies within the
framework of this model.Comment: Minor changes, 31 page
Active-sterile neutrino oscillations in the early Universe: asymmetry generation at low |delta m^2| and the Landau-Zener approximation
It is well established that active-sterile neutrino oscillations generate
large neutrino asymmetries for very small mixing angles (), negative values of and provided that
. By numerically solving the quantum
kinetic equations, we show that the generation still occurs at much lower
values of . We also describe the borders of the generation at
small mixing angles and show how our numerical results can be analytically
understood within the framework of the Landau-Zener approximation thereby
extending previous work based on the adiabatic limit. This approximate approach
leads to a fair description of the MSW dominated regime of the neutrino
asymmetry evolution and is also able to correctly reproduce its final value. We
also briefly discuss the impact that neutrino asymmetry generation could have
on big bang nucleosynthesis, CMBR and relic neutrinos.Comment: 29 pages, 8 figures; to appear on Phys. ReV. D; figure 7 added, new
curves in figure 5a, new figure
Active-Sterile neutrino oscillations and BBN+CMBR constraints
We show how active-sterile neutrino oscillations in the early Universe can
play an interesting role in explaining the current observations of CMBR
anisotropies and light element abundances. We describe different possible
phenomenological scenarios in the interpretation of present data and how
active-sterile neutrino oscillations can provide a viable theoretical
framework.Comment: Some changes, to appear in Phys. Rev.
Energy-dependent solar neutrino flux depletion in the Exact Parity Model and implications for SNO, SuperKamiokande and BOREXINO
Energy-dependent solar neutrino flux reduction caused by the
Mikheyev-Smirnov-Wolfenstein (MSW) effect is applied to the Exact Parity Model.
Several scenarios are possible, depending on the region of parameter space
chosen. The interplay between intergenerational MSW transitions and vacuum
``intragenerational'' ordinary-mirror neutrino oscillations is discussed.
Expectations for the ratio of charged to neutral current event rates at the
Sudbury Neutrino Observatory (SNO) are estimated. The implications of the
various scenarios for the Boron neutrino energy spectrum and BOREXINO are
briefly discussed. The consequences of MSW-induced solar neutrino depletion
within the Exact Parity Model differ in interesting ways from the standard
and cases. The physical causes of
these differences are determined.Comment: 43 pages, 8 figures, RevTeX; to appear in Phys. Rev. D, accepted
versio
Further studies on relic neutrino asymmetry generation I: the adiabatic Boltzmann limit, non-adiabatic evolution, and the classical harmonic oscillator analogue of the quantum kinetic equations
We demonstrate that the relic neutrino asymmetry evolution equation derived
from the quantum kinetic equations (QKEs) reduces to the Boltzmann limit that
is dependent only on the instantaneous neutrino number densities, in the
adiabatic limit in conjunction with sufficient damping. An original physical
and/or geometrical interpretation of the adiabatic approximation is given,
which serves as a convenient visual aid to understanding the sharply
contrasting resonance behaviours exhibited by the neutrino ensemble in opposing
collision regimes. We also present a classical analogue for the evolution of
the difference in and number densities which, in the
Boltzmann limit, is akin to the behaviour of the generic reaction with equal forward and reverse reaction rate constants. A
new characteristic quantity, the matter and collision-affected mixing angle of
the neutrino ensemble, is identified here for the first time. The role of
collisions is revealed to be twofold: (i) to wipe out the inherent
oscillations, and (ii) to equilibrate the and number
densities in the long run. Studies on non-adiabatic evolution and its possible
relation to rapid oscillations in lepton number generation also feature, with
the introduction of an adiabaticity parameter for collision-affected
oscillations.Comment: RevTeX, 38 pages including 8 embedded figure
Quasi-2D Confinement of a BEC in a Combined Optical and Magnetic Potential
We have added an optical potential to a conventional Time-averaged Orbiting
Potential (TOP) trap to create a highly anisotropic hybrid trap for ultracold
atoms. Axial confinement is provided by the optical potential; the maximum
frequency currently obtainable in this direction is 2.2 kHz for rubidium. The
radial confinement is independently controlled by the magnetic trap and can be
a factor of 700 times smaller than in the axial direction. This large
anisotropy is more than sufficient to confine condensates with ~10^5 atoms in a
Quasi-2D (Q2D) regime, and we have verified this by measuring a change in the
free expansion of the condensate; our results agree with a variational model.Comment: 11 pages, 10 figur
- …