1,361 research outputs found
Constrained Design of Deep Iris Networks
Despite the promise of recent deep neural networks in the iris recognition
setting, there are vital properties of the classic IrisCode which are almost
unable to be achieved with current deep iris networks: the compactness of model
and the small number of computing operations (FLOPs). This paper re-models the
iris network design process as a constrained optimization problem which takes
model size and computation into account as learning criteria. On one hand, this
allows us to fully automate the network design process to search for the best
iris network confined to the computation and model compactness constraints. On
the other hand, it allows us to investigate the optimality of the classic
IrisCode and recent iris networks. It also allows us to learn an optimal iris
network and demonstrate state-of-the-art performance with less computation and
memory requirements
Deep Decision Trees for Discriminative Dictionary Learning with Adversarial Multi-Agent Trajectories
With the explosion in the availability of spatio-temporal tracking data in
modern sports, there is an enormous opportunity to better analyse, learn and
predict important events in adversarial group environments. In this paper, we
propose a deep decision tree architecture for discriminative dictionary
learning from adversarial multi-agent trajectories. We first build up a
hierarchy for the tree structure by adding each layer and performing feature
weight based clustering in the forward pass. We then fine tune the player role
weights using back propagation. The hierarchical architecture ensures the
interpretability and the integrity of the group representation. The resulting
architecture is a decision tree, with leaf-nodes capturing a dictionary of
multi-agent group interactions. Due to the ample volume of data available, we
focus on soccer tracking data, although our approach can be used in any
adversarial multi-agent domain. We present applications of proposed method for
simulating soccer games as well as evaluating and quantifying team strategies.Comment: To appear in 4th International Workshop on Computer Vision in Sports
(CVsports) at CVPR 201
Is the fixed ball in our courts? The criminalisation of match-fixing under the Crimes (Match-Fixing) Amendment Act 2014
In sport, match-fixing occurs when the result or a particular part of a match is manipulated, removing the uncertainty integral to sporting contests. Match-fixing was criminalised by the New Zealand legislature in the Crimes (Match-Fixing) Amendment Act 2014. This amendment introduces the Crimes Act 1961, s 240A, which expands the definition of ‘deception’ under s 240 to include match-fixing. The amendment legislation was enacted with a number of laudable aims, primarily focused on protecting the integrity of sport, which this paper believes justified the criminalisation of match-fixing. Such criminalisation can be seen as consistent with other behaviours criminalised in the sporting sphere. However, a number of lacunas discussed in the paper demonstrate that the legislation was not comprehensive in achieving the aims that justified the criminalisation of match-fixing. The paper therefore recommends expanding the legislation, influenced particularly by the specificity of equivalent Australian legislation, and drafts a more comprehensive match-fixing provision that aspires to both remedy the lacunas of the Crimes (Match-Fixing) Amendment Act 2014 and better reflect the legislature’s aims in criminalising match-fixing
Two Stream LSTM: A Deep Fusion Framework for Human Action Recognition
In this paper we address the problem of human action recognition from video
sequences. Inspired by the exemplary results obtained via automatic feature
learning and deep learning approaches in computer vision, we focus our
attention towards learning salient spatial features via a convolutional neural
network (CNN) and then map their temporal relationship with the aid of
Long-Short-Term-Memory (LSTM) networks. Our contribution in this paper is a
deep fusion framework that more effectively exploits spatial features from CNNs
with temporal features from LSTM models. We also extensively evaluate their
strengths and weaknesses. We find that by combining both the sets of features,
the fully connected features effectively act as an attention mechanism to
direct the LSTM to interesting parts of the convolutional feature sequence. The
significance of our fusion method is its simplicity and effectiveness compared
to other state-of-the-art methods. The evaluation results demonstrate that this
hierarchical multi stream fusion method has higher performance compared to
single stream mapping methods allowing it to achieve high accuracy
outperforming current state-of-the-art methods in three widely used databases:
UCF11, UCFSports, jHMDB.Comment: Published as a conference paper at WACV 201
Tracking by Prediction: A Deep Generative Model for Mutli-Person localisation and Tracking
Current multi-person localisation and tracking systems have an over reliance
on the use of appearance models for target re-identification and almost no
approaches employ a complete deep learning solution for both objectives. We
present a novel, complete deep learning framework for multi-person localisation
and tracking. In this context we first introduce a light weight sequential
Generative Adversarial Network architecture for person localisation, which
overcomes issues related to occlusions and noisy detections, typically found in
a multi person environment. In the proposed tracking framework we build upon
recent advances in pedestrian trajectory prediction approaches and propose a
novel data association scheme based on predicted trajectories. This removes the
need for computationally expensive person re-identification systems based on
appearance features and generates human like trajectories with minimal
fragmentation. The proposed method is evaluated on multiple public benchmarks
including both static and dynamic cameras and is capable of generating
outstanding performance, especially among other recently proposed deep neural
network based approaches.Comment: To appear in IEEE Winter Conference on Applications of Computer
Vision (WACV), 201
Deformable face ensemble alignment with robust grouped-L1 anchors
Many methods exist at the moment for deformable face fitting. A drawback to nearly all these approaches is that they are (i) noisy in terms of landmark positions, and (ii) the noise is biased across frames (i.e. the misalignment is toward common directions across all frames). In this paper we propose a grouped -norm anchored method for simultaneously aligning an ensemble of deformable face images stemming from the same subject, given noisy heterogeneous landmark estimates. Impressive alignment performance improvement and refinement is obtained using very weak initialization as "anchors"
Probabilistic Surfel Fusion for Dense LiDAR Mapping
With the recent development of high-end LiDARs, more and more systems are
able to continuously map the environment while moving and producing spatially
redundant information. However, none of the previous approaches were able to
effectively exploit this redundancy in a dense LiDAR mapping problem. In this
paper, we present a new approach for dense LiDAR mapping using probabilistic
surfel fusion. The proposed system is capable of reconstructing a high-quality
dense surface element (surfel) map from spatially redundant multiple views.
This is achieved by a proposed probabilistic surfel fusion along with a
geometry considered data association. The proposed surfel data association
method considers surface resolution as well as high measurement uncertainty
along its beam direction which enables the mapping system to be able to control
surface resolution without introducing spatial digitization. The proposed
fusion method successfully suppresses the map noise level by considering
measurement noise caused by laser beam incident angle and depth distance in a
Bayesian filtering framework. Experimental results with simulated and real data
for the dense surfel mapping prove the ability of the proposed method to
accurately find the canonical form of the environment without further
post-processing.Comment: Accepted in Multiview Relationships in 3D Data 2017 (IEEE
International Conference on Computer Vision Workshops
Tree Memory Networks for Modelling Long-term Temporal Dependencies
In the domain of sequence modelling, Recurrent Neural Networks (RNN) have
been capable of achieving impressive results in a variety of application areas
including visual question answering, part-of-speech tagging and machine
translation. However this success in modelling short term dependencies has not
successfully transitioned to application areas such as trajectory prediction,
which require capturing both short term and long term relationships. In this
paper, we propose a Tree Memory Network (TMN) for modelling long term and short
term relationships in sequence-to-sequence mapping problems. The proposed
network architecture is composed of an input module, controller and a memory
module. In contrast to related literature, which models the memory as a
sequence of historical states, we model the memory as a recursive tree
structure. This structure more effectively captures temporal dependencies
across both short term and long term sequences using its hierarchical
structure. We demonstrate the effectiveness and flexibility of the proposed TMN
in two practical problems, aircraft trajectory modelling and pedestrian
trajectory modelling in a surveillance setting, and in both cases we outperform
the current state-of-the-art. Furthermore, we perform an in depth analysis on
the evolution of the memory module content over time and provide visual
evidence on how the proposed TMN is able to map both long term and short term
relationships efficiently via a hierarchical structure
- …
