35 research outputs found
Prospects for dendroanatomy in paleoclimatology - a case study on Picea engelmannii from the Canadian Rockies
Funding: This research was supported by the Svenska Forskningsrådet Formas (grant no. 2019-01482), the National Science Foundation (grant no. 1502150), the Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (grant no. 200021_182398), and the Grantová Agentura České Republiky (grant no. 20-22351Y).The continuous development of new proxies as well as a refinement of existing tools are key to advances in paleoclimate research and improvements in the accuracy of existing climate reconstructions. Herein, we build on recent methodological progress in dendroanatomy, the analyses of wood anatomical parameters in dated tree rings, and introduce the longest (1585-2014CE) dendroanatomical dataset currently developed for North America. We explore the potential of dendroanatomy of high-elevation Engelmann spruce (Picea engelmannii) as a proxy of past temperatures by measuring anatomical cell dimensions of 15 living trees from the Columbia Icefield area. X-ray maximum latewood density (MXD) and its blue intensity counterpart (MXBI) have previously been measured, allowing comparison between the different parameters. Our findings highlight anatomical MXD and maximum radial cell wall thickness as the two most promising wood anatomical proxy parameters for past temperatures, each explaining 46% and 49%, respectively, of detrended instrumental July-August maximum temperatures over the 1901-1994 period. While both parameters display comparable climatic imprinting at higher frequencies to X-ray derived MXD, the anatomical dataset distinguishes itself from its predecessors by providing the most temporally stable warm season temperature signal. Further studies, including samples from more diverse age cohorts and the adaptation of the regional curve standardization method, are needed to disentangle the ontogenetic and climatic components of long-term signals stored in the wood anatomical traits and to more comprehensively evaluate the potential contribution of this new dataset to paleoclimate research.Publisher PDFPeer reviewe
Modeled Tracheidograms Disclose Drought Influence on Pinus sylvestris Tree-Rings Structure From Siberian Forest-Steppe
Wood formation allows trees to adjust in a changing climate. Understanding what determine its adjustment is crucial to evaluate impacts of climatic changes on trees and forests growth. Despite efforts to characterize wood formation, little is known on its impact on the xylem cellular structure. In this study we apply the Vaganov-Shashkin model to generate synthetic tracheidograms and verify its use to investigate the formation of intra-annual density fluctuations (IADF), one of the most frequent climate tree-ring markers in drought-exposed sites. Results indicate that the model can produce realistic tracheidograms, except for narrow rings (<1 mm), when cambial activity stops due to an excess of drought or a lack of growth vigor. These observations suggest that IADFs are caused by a release of drought limitation to cells formation in the first half of the growing season, but that narrow rings are indicators of an even more extreme and persistent water stress. Taking the example of IADFs formation, this study demonstrated that the Vaganov-Shashkin model is a useful tool to study the climatic impact on tree-ring structures. The ability to produce synthetic tracheidogram represents an unavoidable step to link climate to tree growth and xylem functioning under future scenarios
Contribution of xylem anatomy to tree-ring width of two larch species in permafrost and non-permafrost zones of Siberia
Plants exhibit morphological and anatomical adaptations to cope the environmental constraints of their habitat. How can mechanisms for adapting to contrasting environmental conditions change the patterns of tree rings formation? In this study, we explored differences in climatic conditions of permafrost and non-permafrost zones and assessed their influence on radial growth and wood traits of Larix gmelinii Rupr (Rupr) and Larix sibirica L., respectively. We quantified the contribution of xylem cell anatomy to the tree-ring width variability. Comparison of the anatomical tree-ring parameters over the period 1963–2011 was tested based on non-parametric Mann-Whitney U test. The generalized linear modeling shows the common dependence between TRW and the cell structure characteristics in contrasting environments, which can be defined as non-specific to external conditions. Thus, the relationship between the tree-ring width and the cell production in early- and latewood are assessed as linear, whereas the dependence between the radial cell size in early- and latewood and the tree-ring width becomes significantly non-linear for both habitats. Moreover, contribution of earlywood (EW) and latewood (LW) cells to the variation of TRW (in average 56.8% and 24.4% respectively) was significantly higher than the effect of cell diameters (3.3% (EW) and 17.4% (LW)) for the environments. The results show that different larch species from sites with diverging climatic conditions converge towards similar xylem cell structures and relationships between xylem production and cell traits. The work makes a link between climate and tree-ring structure, and promotes a better understanding the anatomical adaptation of larch species to local environment conditions
Partial asynchrony of coniferous forest carbon sources and sinks at the intra-annual time scale
As major terrestrial carbon sinks, forests play an important role in mitigating climate change. The relationship between the seasonal uptake of carbon and its allocation to woody biomass remains poorly understood, leaving a significant gap in our capacity to predict carbon sequestration by forests. Here, we compare the intra-annual dynamics of carbon fluxes and wood formation across the Northern hemisphere, from carbon assimilation and the formation of non-structural carbon compounds to their incorporation in woody tissues. We show temporally coupled seasonal peaks of carbon assimilation (GPP) and wood cell differentiation, while the two processes are substantially decoupled during off-peak periods. Peaks of cambial activity occur substantially earlier compared to GPP, suggesting the buffer role of non-structural carbohydrates between the processes of carbon assimilation and allocation to wood. Our findings suggest that high-resolution seasonal data of ecosystem carbon fluxes, wood formation and the associated physiological processes may reduce uncertainties in carbon source-sink relationships at different spatial scales, from stand to ecosystem levels.O
Partial asynchrony of coniferous forest carbon sources and sinks at the intra-annual time scale.
As major terrestrial carbon sinks, forests play an important role in mitigating climate change. The relationship between the seasonal uptake of carbon and its allocation to woody biomass remains poorly understood, leaving a significant gap in our capacity to predict carbon sequestration by forests. Here, we compare the intra-annual dynamics of carbon fluxes and wood formation across the Northern hemisphere, from carbon assimilation and the formation of non-structural carbon compounds to their incorporation in woody tissues. We show temporally coupled seasonal peaks of carbon assimilation (GPP) and wood cell differentiation, while the two processes are substantially decoupled during off-peak periods. Peaks of cambial activity occur substantially earlier compared to GPP, suggesting the buffer role of non-structural carbohydrates between the processes of carbon assimilation and allocation to wood. Our findings suggest that high-resolution seasonal data of ecosystem carbon fluxes, wood formation and the associated physiological processes may reduce uncertainties in carbon source-sink relationships at different spatial scales, from stand to ecosystem levels
Woody biomass production lags stem-girth increase by over one month in coniferous forests
Wood is the main terrestrial biotic reservoir for long-term carbon sequestration1, and its formation in trees consumes around 15% of anthropogenic carbon dioxide emissions each year2. However, the seasonal dynamics of woody biomass production cannot be quantified from eddy covariance or satellite observations. As such, our understanding of this key carbon cycle component, and its sensitivity to climate, remains limited. Here, we present high-resolution cellular based measurements of wood formation dynamics in three coniferous forest sites in northeastern France, performed over a period of 3 years. We show that stem woody biomass production lags behind stem-girth increase by over 1 month. We also analyse more general phenological observations of xylem tissue formation in Northern Hemisphere forests and find similar time lags in boreal, temperate, subalpine and Mediterranean forests. These time lags question the extension of the equivalence between stem size increase and woody biomass production to intra-annual time scales3–6. They also suggest that these two growth processes exhibit differential sensitivities to local environmental conditions. Indeed, in the wellwatered French sites the seasonal dynamics of stem-girth increase matched the photoperiod cycle, whereas those of woody biomass production closely followed the seasonal course of temperature. We suggest that forecasted changes in the annual cycle of climatic factors7 may shift the phase timing of stem size increase and woody biomass production in the future
The Gaia mission
Gaia is a cornerstone mission in the science programme of the EuropeanSpace Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to a direct-imaging approach. Both the spacecraft and the payload were built by European industry. The involvement of the scientific community focusses on data processing for which the international Gaia Data Processing and Analysis Consortium (DPAC) was selected in 2007. Gaia was launched on 19 December 2013 and arrived at its operating point, the second Lagrange point of the Sun-Earth-Moon system, a few weeks later. The commissioning of the spacecraft and payload was completed on 19 July 2014. The nominal five-year mission started with four weeks of special, ecliptic-pole scanning and subsequently transferred into full-sky scanning mode. We recall the scientific goals of Gaia and give a description of the as-built spacecraft that is currently (mid-2016) being operated to achieve these goals. We pay special attention to the payload module, the performance of which is closely related to the scientific performance of the mission. We provide a summary of the commissioning activities and findings, followed by a description of the routine operational mode. We summarise scientific performance estimates on the basis of in-orbit operations. Several intermediate Gaia data releases are planned and the data can be retrieved from the Gaia Archive, which is available through the Gaia home page. http://www.cosmos.esa.int/gai
Cell wall dimensions reign supreme : cell wall composition is irrelevant for the temperature signal of latewood density/blue intensity in Scots pine
Many microdensitometric techniques are available for deriving maximum latewood density (MXD), which is the state-of-the-art proxy parameter for local to hemispheric-scale temperature reconstructions of the last millennium. Techniques based on X-ray radiation and visible light reflection, such as "blue intensity" (BI), integrate both the density/composition and the dimensions of the cell walls to derive microdensitometric data. In contrast, the dendroanatomical technique relies only on the dimensions of the cell walls. It is therefore possible to isolate cell wall variables by subtracting data derived using the dendroanatomical technique from data derived using Xray and BI-based techniques. In this study, we explore differences in well-replicated data from parallel X-ray, BI, and dendroanatomical measurements of temperature-sensitive Pinus sylvestris trees from northern Finland. We aim to determine whether cell wall density is critical to the success of X-ray-based MXD, and whether the BI-based parameter counterpart, here termed MXBI, contains useful information about the composition of the cell wall (specifically the lignin). Our results indicate that cell wall density and cell wall BI have no relevant influence on MXD and MXBI measurements. Even in years with severely reduced lignification, identified as so-called "blue rings", dendroanatomical MXD (aMXD) measurements do not deviate significantly from their MXD or MXBI counterparts. Moreover, derived chronologies of cell wall density and cell wall BI contain no significant climate signals when correlated with local climate. Maximum latewood density of conifers can thus be obtained without bias using the dendroanatomical technique. Because lignin content appears to play a negligible role for cell wall BI, the cell wall BI likely presents the biggest challenge when producing unbiased MXBI data. This is because BI data is notorious for cell wall color distortion across the heartwood and sapwood, and between living wood and dead wood, and may therefore distort the otherwise strong link with wood density on multidecadal scales
Modeled Tracheidograms Disclose Drought Influence on Pinus sylvestris Tree-Rings Structure From Siberian Forest-Steppe
Wood formation allows trees to adjust in a changing climate. Understanding what determine its adjustment is crucial to evaluate impacts of climatic changes on trees and forests growth. Despite efforts to characterize wood formation, little is known on its impact on the xylem cellular structure. In this study we apply the Vaganov-Shashkin model to generate synthetic tracheidograms and verify its use to investigate the formation of intra-annual density fluctuations (IADF), one of the most frequent climate tree-ring markers in drought-exposed sites. Results indicate that the model can produce realistic tracheidograms, except for narrow rings (< 1 mm), when cambial activity stops due to an excess of drought or a lack of growth vigor. These observations suggest that IADFs are caused by a release of drought limitation to cells formation in the first half of the growing season, but that narrow rings are indicators of an even more extreme and persistent water stress. Taking the example of IADFs formation, this study demonstrated that the Vaganov-Shashkin model is a useful tool to study the climatic impact on tree-ring structures. The ability to produce synthetic tracheidogram represents an unavoidable step to link climate to tree growth and xylem functioning under future scenarios
Xylogenesis of Scots Pine in an uneven-aged stand of the Minusinsk Depression (Southern Siberia)
Studies on tree-ring formation allow assessing the impact and timing of environmental factors on growth at intra-seasonal resolution. This information is relevant to understand plant acclimatization to current and expected climate changes. Still little is known on how tree age can affect the duration and intensity of annual ring formation. In this study we investigate tree-ring formation of Scots pine (Pinus sylvestris L.) of different age (two classes of 30 and 95 years) from a forest-steppe zone in Southern Siberia. The main tasks were 1) to identify the timing of cambial activity by distinguishing the phases of tracheids division, enlargement, wall thickening and maturation; and 2) to compare the anatomical structure of the tracheids forming the annual rings of the differently aged trees. Observations were performed on stem tissue sampling at weekly resolution from April to September 2014. The results showed different duration of the phases of xylem formation between the groups by up to 1-2 weeks, and that young trees formed a slightly narrower ring width. The tracheids size of the formed cells (i.e. the results of the enlargement phase) was not differed among the groups, whereas the dynamics of the cell-wall thickness showed significant differences. The obtained data can provide references to calibrate processed-based models linking environment to wood formation. In particular, this data allows to benchmarking time-explicit simulated measures of annual ring increment and cell anatomical structures to observation in mature trees growing under natural conditions