7 research outputs found
Executive summary: Guidelines for thediagnosis and treatment of septic arthritis in adults and children, developed bythe GEIO (SEIMC), SEIP and SECOT.
Infection of a native joint, commonly referred to as septic arthritis, is a medical emergency because of the risk of joint destruction and subsequent sequelae. Its diagnosis requires a high level of suspicion. These guidelines for the diagnosis and treatment of septic arthritis in children and adults are intended for use by any physician caring for patients with suspected or confirmed septic arthritis. They have been developed by a multidisciplinary panel with representatives from the Bone and Joint Infections Study Group (GEIO) belonging to the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), the Spanish Society of Paediatric Infections (SEIP) and the Spanish Society of Orthopaedic Surgery and Traumatology (SECOT), and two rheumatologists. The recommendations are based on evidence derived from a systematic literature review and, failing that, on the opinion of the experts who prepared these guidelines. A detailed description of the background, methods, summary of evidence, the rationale supporting each recommendation, and gaps in knowledge can be found online in the complete document
Resumen ejecutivo: GuÃa de diagnóstico y tratamiento de la artritis séptica en adultos y niños de GEIO (SEIMC), SEIP y SECOT
[ES] Infection of a native joint, commonly referred to as septic arthritis, is a medical emergency because of the risk of joint destruction and subsequent sequelae. Its diagnosis requires a high level of suspicion. These guidelines for the diagnosis and treatment of septic arthritis in children and adults are intended for use by any physician caring for patients with suspected or confirmed septic arthritis. They have been developed by a multidisciplinary panel with representatives from the Bone and Joint Infections Study Group (GEIO) belonging to the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), the Spanish Society of Paediatric Infections (SEIP) and the Spanish Society of Orthopaedic Surgery and Traumatology (SECOT), and two rheumatologists. The recommendations are based on evidence derived from a systematic literature review and, failing that, on the opinion of the experts who prepared these guidelines. A detailed description of the background, methods, summary of evidence, the rationale supporting each recommendation, and gaps in knowledge can be found online in the complete document.[EN] La infección de una articulación nativa, generalmente denominada artritis séptica, constituye una urgencia médica por el riesgo de destrucción articular y las consecuentes secuelas. Su diagnóstico requiere un alto nivel de sospecha. Esta guÃa de diagnóstico y tratamiento de la artritis séptica en niños y adultos está destinada a cualquier médico que atienda pacientes con sospecha de artritis séptica o artritis séptica confirmada. La guÃa ha sido elaborada por un panel multidisciplinar en el que están representados el Grupo de Estudio de Infecciones Osteoarticulares (GEIO) de la Sociedad Española de Enfermedades Infecciosas y MicrobiologÃa ClÃnica (SEIMC), la Sociedad Española de InfectologÃa Pediátrica (SEIP) y la Sociedad Española de CirugÃa Ortopédica y TraumatologÃa (SECOT); además han participado dos reumatólogos. Las recomendaciones se basan en la evidencia proporcionada por una revisión sistemática de la literatura y, en su defecto, en la opinión de los expertos que han elaborado la presente guÃa. En el texto completo online se hace una descripción detallada de los antecedentes, métodos, resumen de la evidencia, fundamentos que apoyan cada recomendación y las lagunas de conocimiento existentes.The GEIO, a study group belonging to the SEIMC, funded the English revision of the present document (by Janet Dawson, English native official translator).Peer reviewe
How to avoid genu recurvatum in leg-length discrepancy treated with tension-band plates. A volumetric magnetic resonance analysis
Temporary epiphysiodesis; Growth plate; Genu recurvatumEpifisiodesis temporal; Placa de crecimiento; Genu recurvatumEpifisiodesi temporal; Placa de creixement; Genu recurvatumAims and objectives
Genu recurvatum deformity after treatment of leg-length discrepancy (LLD) with tension-band plating is a recognized, but poorly described phenomenon in medical literature. The aim of this study was to evaluate clinical and radiological features of patients treated with tension-band plating for LLD assessing the development of a recurvatum deformity and its relationship to plate and screw disposition in a transversal plane, thus attempting to establish optimal plate positioning.
Materials and methods
Retrospective study of children with LLD treated with tension-band plating. Primary endpoints were clinical and radiological knee recurvatum and anterior and posterior physeal areas measured drawing a line spanning from the lateral to the medial tension-band plates in the transverse plane using volumetric magnetic resonance imaging (vMRI). These findings were compared between patients with and without knee recurvatum.
Results
Twelve children (mean age 11.7 years) were included. Average follow-up was 2.6 years (1.5–5.0). Tension-band plating led to a significant reduction in LLD (mean, 15 mm). Six patients (50 %) developed clinical genu recurvatum (mean, 22°). According to vMRI, patients with genu recurvatum had a larger posterior to anterior physeal area ratio in both distal femur (1.6 versus 0.9, p < 0.05) and proximal tibial physes (2.2 versus 1.0, p < 0.05).
Conclusion
The optimal position of the tension-band plates in distal femoral and proximal tibial physes should be in a point where a posterior to anterior physeal areas ratio is around 1.0, so as to achieve an even distribution of the physeal areas in the multidimensional physeal transverse plane. This point anatomically corresponds in the sagittal X-ray view to an imaginary line located just anterior to the posterior diaphyseal cortical bone on a true lateral radiograph for both femur and tibia
Isolation, characterization, and differentiation of multipotent neural progenitor cells from human cerebrospinal fluid in fetal cystic myelomeningocele
Despite benefits of prenatal in utero repair of myelomeningocele, a severe type of spina bifida aperta, many of these patients will still suffer mild to severe impairment. One potential source of stem cells for new regenerative medicine-based therapeutic approaches for spinal cord injury repair is neural progenitor cells (NPCs) in cerebrospinal fluid (CSF). To this aim, we extracted CSF from the cyst surrounding the exposed neural placode during the surgical repair of myelomeningocele in 6 fetuses (20 to 26 weeks of gestation). In primary cultured CSF-derived cells, neurogenic properties were confirmed by in vitro differentiation into various neural lineage cell types, and NPC markers expression (TBR2, CD15, SOX2) were detected by immunofluorescence and RT-PCR analysis. Differentiation into three neural lineages was corroborated by arbitrary differentiation (depletion of growths factors) or explicit differentiation as neuronal, astrocyte, or oligodendrocyte cell types using specific induction mediums. Differentiated cells showed the specific expression of neural differentiation markers (βIII-tubulin, GFAP, CNPase, oligo-O1). In myelomeningocele patients, CSF-derived cells could become a potential source of NPCs with neurogenic capacity. Our findings support the development of innovative stem-cell-based therapeutics by autologous transplantation of CSF-derived NPCs in damaged spinal cords, such as myelomeningocele, thus promoting neural tissue regeneration in fetuses
Isolation, characterization, and differentiation of multipotent neural progenitor cells from human cerebrospinal fluid in fetal cystic myelomeningocele
Despite benefits of prenatal in utero repair of myelomeningocele, a severe type of spina bifida aperta, many of these patients will still suffer mild to severe impairment. One potential source of stem cells for new regenerative medicine-based therapeutic approaches for spinal cord injury repair is neural progenitor cells (NPCs) in cerebrospinal fluid (CSF). To this aim, we extracted CSF from the cyst surrounding the exposed neural placode during the surgical repair of myelomeningocele in 6 fetuses (20 to 26 weeks of gestation). In primary cultured CSF-derived cells, neurogenic properties were confirmed by in vitro differentiation into various neural lineage cell types, and NPC markers expression (TBR2, CD15, SOX2) were detected by immunofluorescence and RT-PCR analysis. Differentiation into three neural lineages was corroborated by arbitrary differentiation (depletion of growths factors) or explicit differentiation as neuronal, astrocyte, or oligodendrocyte cell types using specific induction mediums. Differentiated cells showed the specific expression of neural differentiation markers (βIII-tubulin, GFAP, CNPase, oligo-O1). In myelomeningocele patients, CSF-derived cells could become a potential source of NPCs with neurogenic capacity. Our findings support the development of innovative stem-cell-based therapeutics by autologous transplantation of CSF-derived NPCs in damaged spinal cords, such as myelomeningocele, thus promoting neural tissue regeneration in fetuses