200 research outputs found

    Protonated CO2 in massive star-forming clumps

    Get PDF
    Interstellar CO2 is an important reservoir of carbon and oxygen, and one of the major constituents of the icy mantles of dust grains, but it is not observable directly in the cold gas because has no permanent dipole moment. Its protonated form, HOCO+, is believed to be a good proxy for gaseous CO2. However, it has been detected in only a few star-forming regions so far, so that its interstellar chemistry is not well understood. We present new detections of HOCO+ lines in 11 high-mass star-forming clumps. Our observations increase by more than three times the number of detections in star-forming regions so far. We have derived beam-averaged abundances relative to H2 in between 0.3 and 3.8 x 10^{-11}. We have compared these values with the abundances of H13CO+, a possible gas-phase precursor of HOCO+, and CH3OH, a product of surface chemistry. We have found a positive correlation with H13CO+, while with CH3OH there is no correlation. We suggest that the gas-phase formation route starting from HCO+ plays an important role in the formation of HOCO+, perhaps more relevant than protonation of CO2 (upon evaporation of this latter from icy dust mantles).Comment: 5 pages, 4 figures, 1 table, accepted for publication in MNRA

    A gas-rich AGN near the centre of a galaxy cluster at z ~ 1.4

    Full text link
    The formation of the first virialized structures in overdensities dates back to ~9 Gyr ago, i.e. in the redshift range z ~ 1.4 - 1.6. Some models of structure formation predict that the star formation activity in clusters was high at that epoch, implying large reservoirs of cold molecular gas. Aiming at finding a trace of this expected high molecular gas content in primeval clusters, we searched for the 12CO(2-1) line emission in the most luminous active galactic nucleus (AGN) of the cluster around the radio galaxy 7C 1756+6520 at z ~ 1.4, one of the farthest spectroscopic confirmed clusters. This AGN, called AGN.1317, is located in the neighbourhood of the central radio galaxy at a projected distance of ~780 kpc. The IRAM Plateau de Bure Interferometer was used to investigate the molecular gas quantity in AGN.1317, observing the 12CO(2-1) emission line. We detect CO emission in an AGN belonging to a galaxy cluster at z ~ 1.4. We measured a molecular gas mass of 1.1 x 10^10 Msun, comparable to that found in submillimeter galaxies. In optical images, AGN.1317 does not seem to be part of a galaxy interaction or merger.We also derived the nearly instantaneous star formation rate (SFR) from Halpha flux obtaining a SFR ~65 Msun/yr. This suggests that AGN.1317 is actively forming stars and will exhaust its reservoir of cold gas in ~0.2-1.0 Gyr.Comment: 5 pages, 3 figures, accepted for publication in Astronomy & Astrophysic

    On the chemical ladder of esters. Detection and formation of ethyl formate in the W51 e2 hot molecular core

    Full text link
    The detection of organic molecules with increasing complexity and potential biological relevance is opening the possibility to understand the formation of the building blocks of life in the interstellar medium. One of the families of molecules with astrobiological interest are the esters, whose simplest member, methyl formate, is rather abundant in star-forming regions. The next step in the chemical complexity of esters is ethyl formate, C2_2H5_5OCHO. Only two detections of this species have been reported so far, which strongly limits our understanding of how complex molecules are formed in the interstellar medium. We have searched for ethyl formate towards the W51 e2 hot molecular core, one of the most chemically rich sources in the Galaxy and one of the most promising regions to study prebiotic chemistry, especially after the recent discovery of the P-O bond, key in the formation of DNA. We have analyzed a spectral line survey towards the W51 e2 hot molecular core, which covers 44 GHz in the 1, 2 and 3 mm bands, carried out with the IRAM 30m telescope. We report the detection of the trans and gauche conformers of ethyl formate. A Local Thermodynamic Equilibrium analysis indicates that the excitation temperature is 78±\pm10 K and that the two conformers have similar source-averaged column densities of (2.0±\pm0.3)×\times1016^{16} cm2^{-2} and an abundance of \sim108^{-8}. We compare the observed molecular abundances of ethyl formate with different competing chemical models based on grain surface and gas-phase chemistry. We propose that grain-surface chemistry may have a dominant role in the formation of ethyl formate (and other complex organic molecules) in hot molecular cores, rather than reactions in the gas phase.Comment: Accepted in A&A; 11 pages, 6 figures, 7 Table

    First ALMA maps of HCO, an important precursor of complex organic molecules, towards IRAS 16293-2422

    Get PDF
    The formyl radical HCO has been proposed as the basic precursor of many complex organic molecules such as methanol (CH3_3OH) or glycolaldehyde (CH2_2OHCHO). Using ALMA, we have mapped, for the first time at high angular resolution (\sim1^{\prime\prime}, \sim140 au), HCO towards the Solar-type protostellar binary IRAS 16293-2422, where numerous complex organic molecules have been previously detected. We also detected several lines of the chemically related species H2_2CO, CH3_3OH and CH2_2OHCHO. The observations revealed compact HCO emission arising from the two protostars. The line profiles also show redshifted absorption produced by foreground material of the circumbinary envelope that is infalling towards the protostars. Additionally, IRAM 30m single-dish data revealed a more extended HCO component arising from the common circumbinary envelope. The comparison between the observed molecular abundances and our chemical model suggests that whereas the extended HCO from the envelope can be formed via gas-phase reactions during the cold collapse of the natal core, the HCO in the hot corinos surrounding the protostars is predominantly formed by the hydrogenation of CO on the surface of dust grains and subsequent thermal desorption during the protostellar phase. The derived abundance of HCO in the dust grains is high enough to produce efficiently more complex species such as H2_2CO, CH3_3OH, and CH2_2OHCHO by surface chemistry. We found that the main formation route of CH2_2OHCHO is the reaction between HCO and CH2_2OH.Comment: Accepted in Monthly Notices of the Royal Astronomical Society; 19 pages, 12 figures, 7 table

    Hot and dense water in the inner 25 AU of SVS13-A

    Get PDF
    In the context of the ASAI (Astrochemical Surveys At IRAM) project, we carried out an unbiased spectral survey in the millimeter window towards the well known low-mass Class I source SVS13-A. The high sensitivity reached (3-12 mK) allowed us to detect at least 6 HDO broad (FWHM ~ 4-5 km/s) emission lines with upper level energies up to Eu = 837 K. A non-LTE LVG analysis implies the presence of very hot (150-260 K) and dense (> 3 10^7 cm-3) gas inside a small radius (\sim 25 AU) around the star, supporting, for the first time, the occurrence of a hot corino around a Class I protostar. The temperature is higher than expected for water molecules are sublimated from the icy dust mantles (~ 100 K). Although we cannot exclude we are observig the effects of shocks and/or winds at such small scales, this could imply that the observed HDO emission is tracing the water abundance jump expected at temperatures ~ 220-250 K, when the activation barrier of the gas phase reactions leading to the formation of water can be overcome. We derive X(HDO) ~ 3 10-6, and a H2O deuteration > 1.5 10-2, suggesting that water deuteration does not decrease as the protostar evolves from the Class 0 to the Class I stage.Comment: MNRAS Letter

    Stem cell senescence: effects of REAC technology on telomerase-independent and telomerase-dependent pathways

    Get PDF
    Decline in the gene expression of senescence repressor Bmi1, and telomerase, together with telomere shortening, underlay senescence of stem cells cultured for multiple passages. Here, we investigated whether the impairment of senescence preventing mechanisms can be efficiently counteracted by exposure of human adipose-derived stem cells to radio electric asymmetrically conveyed fields by an innovative technology, named Radio Electric Asymmetric Conveyer (REAC). Due to REAC exposure, the number of stem cells positively stained for senescence associated ß-galactosidase was significantly reduced along multiple culturing passages. After a 90-day culture, REAC-treated cells exhibited significantly higher transcription of Bmi1 and enhanced expression of other stem cell pluripotency genes and related proteins, compared to unexposed cells. Transcription of the catalytic telomerase subunit (TERT) was also increased in REAC-treated cells at all passages. Moreover, while telomere shortening occurred at early passages in both REAC-treated and untreated cells, a significant rescue of telomere length could be observed at late passages only in REAC-exposed cells. Thus, REAC-asymmetrically conveyed radio electric fields acted on a gene and protein expression program of both telomerase-independent and telomerase-dependent patterning to optimize stem cell ability to cope with senescence progression

    Fecal concentrations of cortisol, testosterone, and progesterone in cotton-top tamarins hosted in different zoological parks: Relationship among physiological data, environmental conditions and behavioral patterns

    Get PDF
    The aim of this investigation was to study the welfare of three captive groups of cotton-top tamarins housed in different zoological parks. Ethological observations were conducted over one year. In addition, fecal samples were collected and the concentrations of glucocorticoids, androgens, and progestagens were measured. Within each group, no significant differences in fecal cortisol concentrations were found between subjects. The fecal concentrations of testosterone and progesterone significantly differed depending on the sex and the age of the animals. A significant association was found among hormone concentrations, exhibit dimension, and group composition. A highly significant correlation was uncovered between all hormones considered and the space available for each subject. Significant differences in behavioral patterns were observed among groups, including social-individual, affiliative-aggressive, and anogenital-suprapubic scent marking. Correlations between hormone measurements and behaviors were detected. In conclusion, this study confirmed the associations between some behaviors exhibited by these nonhuman primates and both cortisol and testosterone; these data also highlight the role played by progesterone in these behaviors

    Italian Science Case for ALMA Band 2+3

    Get PDF
    The Premiale Project "Science and Technology in Italy for the upgraded ALMA Observatory - iALMA" has the goal of strengthening the scientific, technological and industrial Italian contribution to the Atacama Large Millimeter/submillimeter Array (ALMA), the largest ground based international infrastructure for the study of the Universe in the microwave. One of the main objectives of the Science Working Group (SWG) inside iALMA, the Work Package 1, is to develop the Italian contribution to the Science Case for the ALMA Band 2 or Band 2+3 receiver. ALMA Band 2 receiver spans from ~67 GHz (bounded by an opaque line complex of ozone lines) up to 90 GHz which overlaps with the lower frequency end of ALMA Band 3. Receiver technology has advanced since the original definition of the ALMA frequency bands. It is now feasible to produce a single receiver which could cover the whole frequency range from 67 GHz to 116 GHz, encompassing Band 2 and Band 3 in a single receiver cartridge, a so called Band 2+3 system. In addition, upgrades of the ALMA system are now foreseen that should double the bandwidth to 16 GHz. The science drivers discussed below therefore also discuss the advantages of these two enhancements over the originally foreseen Band 2 system.Comment: 43 pages, 21 figure

    DC3_3N observations towards high-mass star-forming regions

    Full text link
    We present the study of deuteration of cyanoacetylene (HC3_3N) towards a sample of 28 high-mass star-forming cores divided into different evolutionary stages, from starless to evolved protostellar cores. We report for the first time the detection of DC3_3N towards 15 high-mass cores. The abundance ratios of DC3_3N with respect HC3_3N range in the interval 0.003-0.022, lower than those found in low-mas protostars and dark clouds. No significant trend with the evolutionary stage, or with the kinetic temperature of the region, has been found. We compare the level of deuteration of HC3_3N with those of other molecules towards the same sample, finding weak correlation with species formed only or predominantly in gas phase (N2_2H+^+ and HNC, respectively), and no correlation with species formed only or predominantly on dust grains (CH3_3OH and NH3_3, respectively). We also present a single-dish map of DC3_3N towards the protocluster IRAS 05358+3543, which shows that DC3_3N traces an extended envelope (\sim0.37 pc) and peaks towards two cold condensations separated from the positions of the protostars and the dust continuum. The observations presented in this work suggest that deuteration of HC3_3N is produced in the gas of the cold outer parts of massive star-forming clumps, giving us an estimate of the deuteration factor prior to the formation of denser gas.Comment: Accepted in Monthly Notices of the Royal Astronomical Society -- 11 pages, 7 Figures, 2 Tables. Version with some typos correcte

    Origin of the PN molecule in star-forming regions:the enlarged sample

    Get PDF
    Phosphorus nitride (PN) is the P-bearing species with the highest number of detections in star-forming regions. Multiline studies of the molecule have shown that the excitation temperature of PN is usually lower than the gas kinetic temperature, suggesting that PN is likely in conditions of sub-thermal excitation. We present an analysis of PN that takes the possible sub-thermal excitation conditions into account in a sample of 24 massive star-forming regions. We observed PN (2–1), (3–2), (4–3), and (6–5) with the IRAM-30m and APEX telescopes and detected PN lines in 15 of them. Together with 9 similar sources detected in PN in previous works, we have analysed the largest sample of star-forming regions to date, made of 33 sources with 24 detections in total (among which 13 are new detections). Hence, we have increased the number of star-forming regions detected in PN by more than a factor 2. Our analysis indicates that the PN lines are indeed sub-thermally excited, but well described by a single excitation temperature. We have compared line profiles and fractional abundances of PN and SiO, a typical shock tracer, and found that almost all objects detected in PN have high-velocity SiO wings. Moreover, the SiO and PN abundances with respect to H2 are correlated over several orders of magnitude, and uncorrelated with gas temperature. This clearly shows that the production of PN is strongly linked to the presence of shocked gas, and rules out alternative scenarios based on thermal evaporation from iced grain mantles
    corecore