1,869 research outputs found
Les amis, le bibliophile et le livre
Depuis sa création en 1978, la société des Amis de la bibliothèque municipale de Reims a beaucoup oeuvré pour valoriser le patrimoine écrit. Fait novateur pour
l’époque, elle lança une politique de soutien à la création de livres d’artistes et de reliures contemporaines, et poursuivit une politique d’acquisitions et de
manifestations qui perdure aujourd’hui
Fibrosis of the left atria during progression of heart failure is associated with increased matrix metalloproteinases in the rat
AbstractObjectivesThe purpose of this study was to determine the pathogenic factors and molecular mechanisms involved in fibrosis of the atria.BackgroundFibrosis is an important component of the pathophysiology of atrial fibrillation, especially when the arrhythmia is associated with heart failure (HF) or atrial dilation.MethodsWe used a rat model of myocardial infarction (MI) complicated by various degrees of left ventricular dysfunction and atrial dilation to study fibrosis and matrix metalloproteinase (MMP) activity in the left atrial (LA) myocardium by means of histologic, Western blot, zymographic, and immunohistologic techniques.ResultsThree months after surgical ligature of the left coronary artery, 27 rats had a large MI, 12 were in mild HF, and 15 in severe HF. Both groups had LA enlargement at the echocardiography. Masson’s trichrome and picrosirius staining of tissue sections revealed marked fibrosis at the periphery of trabeculae and also surrounding myolytic myocytes, in both mild and severe HF. In mild HF, the activity and expression of the matrilysin MMP-7 were increased (122%), whereas in severe HF, both MMP-7 (211%) and the gelatinase MMP-2 (187%) were up-regulated. There were no changes in the expression or activity of MMP inhibitors, TIMP-1, -2, and -4. Immunostaining of cryosections showed that MMP-2 was present in the interstitial spaces, whereas MMP-7 accumulated in myolytic myocytes.ConclusionsHemodynamic overload of the atria is an important pathogenic factor of fibrosis; MMP-7 appears to be involved in the early stage of this tissue remodeling process
β(1,3)-Glucanosyl-Transferase Activity Is Essential for Cell Wall Integrity and Viability of Schizosaccharomyces pombe
13 páginas, 7 figuras, 2 tablas.[Background]: The formation of the cell wall in Schizosaccharomyces pombe requires the coordinated activity of enzymes
involved in the biosynthesis and modification of b-glucans. The b(1,3)-glucan synthase complex synthesizes linear b(1,3)-
glucans, which remain unorganized until they are cross-linked to other b(1,3)-glucans and other cell wall components.
Transferases of the GH72 family play important roles in cell wall assembly and its rearrangement in Saccharomyces cerevisiae
and Aspergillus fumigatus. Four genes encoding b(1,3)-glucanosyl-transferases -gas1+, gas2+, gas4+ and gas5+- are present in
S. pombe, although their function has not been analyzed.
[Methodology/Principal Findings]: Here, we report the characterization of the catalytic activity of gas1p, gas2p and gas5p
together with studies directed to understand their function during vegetative growth. From the functional point of view,
gas1p is essential for cell integrity and viability during vegetative growth, since gas1D mutants can only grow in osmotically
supported media, while gas2p and gas5p play a minor role in cell wall construction. From the biochemical point of view, all
of them display b(1,3)-glucanosyl-transferase activity, although they differ in their specificity for substrate length, cleavage
point and product size. In light of all the above, together with the differences in expression profiles during the life cycle, the
S. pombe GH72 proteins may accomplish complementary, non-overlapping functions in fission yeast.
[Conclusions/Significance]: We conclude that b(1,3)-glucanosyl-transferase activity is essential for viability in fission yeast,
being required to maintain cell integrity during vegetative growth.This research was supported by grants from the Comision Interministerial de Ciencia y Tecnologia (BFU2004-00778) and Junta de Castilla y Leon
(GR231) to C.R.V-A and from the European Community (LSHB-CT-2004-511952) to C.R.V-A. and J.P.L. M.M-R. held a fellowship from the Ministerio de Educacion y
Ciencia.Peer reviewe
Definition of the anti-inflammatory oligosaccharides derived from the galactosaminogalactan (GAG) from Aspergillus fumigatus
Galactosaminogalactan (GAG) is an insoluble aminosugar polymer produced by Aspergillus fumigatus and has anti-inflammatory properties. Here, the minimum glycosidic sequences required for the induction of IL-1Ra by peripheral blood mononuclear cells (PBMCs) was investigated. Using chemical degradation of native GAG to isolate soluble oligomers, we have found that the de-N-acetylation of galactosamine residues and the size of oligomer are critical for the in vitro immune response. A minimal oligomer size of 20 galactosamine residues is required for the anti-inflammatory response but the presence of galactose residues is not necessary. In a Dextran sulfate induced colitis mouse model, a fraction of de-N-acetylated oligomers of 13 < dp < 20 rescue inflammatory damage like the native GAG polymer in an IL-1Ra dependent pathway. Our results demonstrate the therapeutic suitability of water-soluble GAG oligosaccharides in IL-1 mediated hyper-inflammatory diseases and suggest that α-1,4-galactosamine oligomers chemically synthesized could represent new anti-inflammatory glycodrugs.Aviesan project Aspergillus, the French Government's Investissement d'Avenir program, Laboratoire d'Excellence Integrative Biology of Emerging Infectious Diseases (Grant No ANR-10-LABX-62-IBEID), la Fondation pour la Recherche Médicale (DEQ20150331722 LATGE Equipe FRM 2015). RS thanks Fundação para a Ciência e Tecnologia (FCT) contract IF/00021/201
Galactosaminogalactan, a New Immunosuppressive Polysaccharide of Aspergillus fumigatus
A new polysaccharide secreted by the human opportunistic fungal pathogen Aspergillus fumigatus has been characterized. Carbohydrate analysis using specific chemical degradations, mass spectrometry, 1H and 13C nuclear magnetic resonance showed that this polysaccharide is a linear heterogeneous galactosaminogalactan composed of α1-4 linked galactose and α1-4 linked N-acetylgalactosamine residues where both monosacharides are randomly distributed and where the percentage of galactose per chain varied from 15 to 60%. This polysaccharide is antigenic and is recognized by a majority of the human population irrespectively of the occurrence of an Aspergillus infection. GalNAc oligosaccharides are an essential epitope of the galactosaminogalactan that explains the universal antibody reaction due to cross reactivity with other antigenic molecules containing GalNAc stretches such as the N-glycans of Campylobacter jejuni. The galactosaminogalactan has no protective effect during Aspergillus infections. Most importantly, the polysaccharide promotes fungal development in immunocompetent mice due to its immunosuppressive activity associated with disminished neutrophil infiltrates
Status of the Micro Vertex Detector of the Compressed Baryonic Matter Experiment
The CBM experiment will investigate heavy-ion collisions at beam energies from 8 to 45 AGeV
at the future accelerator facility FAIR. The goal of the experiment is to study the QCD phase
diagram in the vincinity of the QCD critical point. To do so, CBM aims at measuring rare probes
among them open charm. In order to identify those rare and short lived particles despite the
rich combinatorial background generated in heavy ion collisions, a micro vertex detector (MVD)
providing an unprecedented combination of high rate capability and radiation hardness, very light
material budget and excellent granularity is required. In this work, we will discuss the concept of
this detector and summarize the status of the R&D
Generation of functionally active resident macrophages from adipose tissue by 3D cultures
IntroductionWithin adipose tissue (AT), different macrophage subsets have been described, which played pivotal and specific roles in upholding tissue homeostasis under both physiological and pathological conditions. Nonetheless, studying resident macrophages in-vitro poses challenges, as the isolation process and the culture for extended periods can alter their inherent properties.MethodsStroma-vascular cells isolated from murine subcutaneous AT were seeded on ultra-low adherent plates in the presence of macrophage colony-stimulating factor. After 4 days of culture, the cells spontaneously aggregate to form spheroids. A week later, macrophages begin to spread out of the spheroid and adhere to the culture plate.ResultsThis innovative three-dimensional (3D) culture method enables the generation of functional mature macrophages that present distinct genic and phenotypic characteristics compared to bone marrow–derived macrophages. They also show specific metabolic activity and polarization in response to stimulation, but similar phagocytic capacity. Additionally, based on single-cell analysis, AT-macrophages generated in 3D culture mirror the phenotypic and functional traits of in-vivo AT resident macrophages.DiscussionOur study describes a 3D in-vitro system for generating and culturing functional AT-resident macrophages, without the need for cell sorting. This system thus stands as a valuable resource for exploring the differentiation and function of AT-macrophages in vitro in diverse physiological and pathological contexts
Evaluation Tools for Low-Speed Automated Vehicle (LSAV) Transit Readiness of the Area
69A3551747115/Project 05-113Automated shuttles are small, low-speed (generally less than 25 mph) vehicles that do not require a human operator, though to date all have included an onboard human attendant. This project aims to assess the limitations that the EasyMile EZ10 Gen 3 low-speed automated vehicle (LSAV) encountered while operating on public roadways. The primary interests are to evaluate the infrastructure elements that posed the most challenges for the LSAV during its deployment. Further, the EasyMile EZ10 Gen 3 is advertised as being capable of operating at SAE International Level 4 Automated Driving System capability in certain ODDs. Accordingly, the team deployed the LSAV with the expectation that it would be operated at SAE Level 2 capability. The human safety operator was required to intervene in scenarios beyond the vehicle\u2019s automated functional capability. The results of this analysis indicated that the LSAV operated at a lower than expected speed, experienced a high frequency of disengagements, and had a regular need for safety operator intervention. These results suggest that the EZ10 Gen 3 vehicle is not yet operating at SAE International Level 4 capability on routes with moderate complexity
Neuroprotective Effect of Inhaled Nitric Oxide on Excitotoxic-Induced Brain Damage in Neonatal Rat
BACKGROUND: Inhaled nitric oxide (iNO) is one of the most promising therapies used in neonates. However, little information is known about its impact on the developing brain submitted to excitotoxic challenge. METHODOLOGY/PRINCIPAL FINDINGS: We investigated here the effect of iNO in a neonatal model of excitotoxic brain lesions. Rat pups and their dams were placed in a chamber containing 20 ppm NO during the first week of life. At postnatal day (P)5, rat pups were submitted to intracranial injection of glutamate agonists. At P10, rat pups exposed to iNO exhibited a significant decrease of lesion size in both the white matter and cortical plate compared to controls. Microglia activation and astrogliosis were found significantly decreased in NO-exposed animals. This neuroprotective effect was associated with a significant decrease of several glutamate receptor subunits expression at P5. iNO was associated with an early (P1) downregulation of pCREB/pAkt expression and induced an increase in pAkt protein concentration in response to excitotoxic challenge (P7). CONCLUSION: This study is the first describe and investigate the neuroprotective effect of iNO in neonatal excitotoxic-induced brain damage. This effect may be mediated through CREB pathway and subsequent modulation of glutamate receptor subunits expression
Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.
Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis
- …