992 research outputs found
Estrogen receptor, progesterone receptor, and bcl-2 are markers with prognostic significance in CIN III
There are no known biological markers or technologies to predict the natural history of an individual CIN III. The probability of progression is considered greater with the persistence of high-risk human papillomavirus (HPV) infection and age. p53 polymorphism has been associated with cervical carcinogenesis. Hormone-induced cervical cancer is mediated by estrogen receptor (ER) and progesterone receptor (PR). In cervical cancer, increased bcl-2 and Bax immunoreactivity is generally associated with a better prognosis. The purpose of this study was to evaluate the value of HPV 16 and HPV 18 typing and p53 codon polymorphism genotyping by polymerase chain reaction and ER, PR, bcl-2, and Bax expression by immunohistochemistry in predicting the CIN III clinical behavior of CIN III lesions. We studied the expression of these prognostic factors in the CIN III adjacent to squamous cell microinvasive carcinomas of the cervix (MIC) from 29 patients with FIGO stage IA1 cervical cancer and in 25 patients with CIN III and no documented focus of invasion. In the MIC group, only the CIN III was considered at least 2 mm away from the microinvasive complex. The ER, PR, bcl-2, and Bax immunoreactivity was scored as positive (>10% staining cells) and negative (<10% staining cells). No significant difference was observed between MIC and CIN III group concerning HPV infection and p53 polymorphism. The ER, PR, bcl-2, and Bax immunohistochemical expression was stronger and more frequent in the CIN III group. After multivariable analysis, coexpression of ER, PR, and bcl-2 was the only independent factor in defining low risk of progression for CIN III. Our study suggests that coexpression of ER, PR, and bcl-2 may be a useful tool in identifying the CIN III lesions with low risk of progression to cervical cance
Two highly divergent alcohol dehydrogenases of melon exhibit fruit ripening-specific expression and distinct biochemical characteristics
Alcohol dehydrogenases (ADH) participate in
the biosynthetic pathway of aroma volatiles in fruit by
interconverting aldehydes to alcohols and providing substrates
for the formation of esters. Two highly divergent
ADH genes (15% identity at the amino acid level) of
Cantaloupe Charentais melon (Cucumis melo var. Cantalupensis)
have been isolated. Cm-ADH1 belongs to the
medium-chain zinc-binding type of ADHs and is highly
similar to all ADH genes expressed in fruit isolated so far.
Cm-ADH2 belongs to the short-chain type of ADHs. The
two encoded proteins are enzymatically active upon
expression in yeast. Cm-ADH1 has strong preference for
NAPDH as a co-factor, whereas Cm-ADH2 preferentially
uses NADH. Both Cm-ADH proteins are much more active
as reductases with Kms 10–20 times lower for the conversion
of aldehydes to alcohols than for the dehydrogenation
of alcohols to aldehydes. They both show strong preference
for aliphatic aldehydes but Cm-ADH1 is capable of
reducing branched aldehydes such as 3-methylbutyraldehyde,
whereas Cm-ADH2 cannot. Both Cm-ADH genes are
expressed specifically in fruit and up-regulated during
ripening. Gene expression as well as total ADH activity are
strongly inhibited in antisense ACC oxidase melons and in
melon fruit treated with the ethylene antagonist 1-methylcyclopropene
(1-MCP), indicating a positive regulation by
ethylene. These data suggest that each of the Cm-ADH
protein plays a specific role in the regulation of aroma
biosynthesis in melon fruit
Caterpillars and fungal pathogens: two co-occurring parasites of an ant-plant mutualism
In mutualisms, each interacting species obtains resources from its partner that it would obtain less efficiently if alone, and so derives a net fitness benefit. In exchange for shelter (domatia) and food, mutualistic plant-ants protect their host myrmecophytes from herbivores, encroaching vines and fungal pathogens. Although selective filters enable myrmecophytes to host those ant species most favorable to their fitness, some insects can by-pass these filters, exploiting the rewards supplied whilst providing nothing in return. This is the case in French Guiana for Cecropia obtusa (Cecropiaceae) as Pseudocabima guianalis caterpillars (Lepidoptera, Pyralidae) can colonize saplings before the installation of their mutualistic Azteca ants. The caterpillars shelter in the domatia and feed on food bodies (FBs) whose production increases as a result. They delay colonization by ants by weaving a silk shield above the youngest trichilium, where the FBs are produced, blocking access to them. This probable temporal priority effect also allows female moths to lay new eggs on trees that already shelter caterpillars, and so to occupy the niche longer and exploit Cecropia resources before colonization by ants. However, once incipient ant colonies are able to develop, they prevent further colonization by the caterpillars. Although no higher herbivory rates were noted, these caterpillars are ineffective in protecting their host trees from a pathogenic fungus, Fusarium moniliforme (Deuteromycetes), that develops on the trichilium in the absence of mutualistic ants. Therefore, the Cecropia treelets can be parasitized by two often overlooked species: the caterpillars that shelter in the domatia and feed on FBs, delaying colonization by mutualistic ants, and the fungal pathogen that develops on old trichilia. The cost of greater FB production plus the presence of the pathogenic fungus likely affect tree growth
Nut production in Bertholletia excelsa across a logged forest mosaic: implications for multiple forest use
Although many examples of multiple-use forest management may be found in tropical smallholder systems, few studies provide empirical support for the integration of selective timber harvesting with non-timber forest product (NTFP) extraction. Brazil nut (Bertholletia excelsa, Lecythidaceae) is one of the world’s most economically-important NTFP species extracted almost entirely from natural forests across the Amazon Basin. An obligate out-crosser, Brazil nut flowers are pollinated by large-bodied bees, a process resulting in a hard round fruit that takes up to 14 months to mature. As many smallholders turn to the financial security provided by timber, Brazil nut fruits are increasingly being harvested in logged forests. We tested the influence of tree and stand-level covariates (distance to nearest cut stump and local logging intensity) on total nut production at the individual tree level in five recently logged Brazil nut concessions covering about 4000 ha of forest in Madre de Dios, Peru. Our field team accompanied Brazil nut harvesters during the traditional harvest period (January-April 2012 and January-April 2013) in order to collect data on fruit production. Three hundred and ninety-nine (approximately 80%) of the 499 trees included in this study were at least 100 m from the nearest cut stump, suggesting that concessionaires avoid logging near adult Brazil nut trees. Yet even for those trees on the edge of logging gaps, distance to nearest cut stump and local logging intensity did not have a statistically significant influence on Brazil nut production at the applied logging intensities (typically 1–2 timber trees removed per ha). In one concession where at least 4 trees ha-1 were removed, however, the logging intensity covariate resulted in a marginally significant (0.09) P value, highlighting a potential risk for a drop in nut production at higher intensities. While we do not suggest that logging activities should be completely avoided in Brazil nut rich forests, when a buffer zone cannot be observed, low logging intensities should be implemented. The sustainability of this integrated management system will ultimately depend on a complex series of socioeconomic and ecological interactions. Yet we submit that our study provides an important initial step in understanding the compatibility of timber harvesting with a high value NTFP, potentially allowing for diversification of forest use strategies in Amazonian Perù
Recommended from our members
Comparison of herbarium label data and published medicinal use: herbaria as an underutilized source of ethnobotanical information
The use of herbarium specimens as vouchers to support ethnobotanical surveys is well established. However,
herbaria may be underutilized resources for ethnobotanical research that depends on the analysis of large datasets compiled across multiple sites. Here, we compare two medicinal use datasets, one sourced from
published papers and the other from online herbaria to determine whether herbarium and published data
are comparable and to what extent herbarium specimens add new data and fill gaps in our knowledge of
geographical extent of plant use. Using Brazilian legumes as a case study, we compiled 1400 use reports from
105 publications and 15 Brazilian herbaria. Of the 319 species in 107 genera with cited medicinal uses, 165
(51%) were recorded only in the literature and 55 (17%) only on herbarium labels. Mode of application,
plant part used, or therapeutic use was less often documented by herbarium specimen labels (17% with
information) than publications (70%). However, medicinal use of 21 of the 128 species known from only
one report in the literature was substantiated from independently collected herbarium specimens, and 58
new therapeutic applications, 25 new plant parts, and 16 new modes of application were added for species
known from the literature. Thus, when literature reports are few or information-poor, herbarium data can
both validate and augment these reports. Herbarium data can also provide insights into the history and
geographical extent of use that are not captured in publications
Architecture of an Antagonistic Tree/Fungus Network: The Asymmetric Influence of Past Evolutionary History
Compartmentalization and nestedness are common patterns in ecological networks. The aim of this study was to elucidate some of the processes shaping these patterns in a well resolved network of host/pathogen interactions.Based on a long-term (1972-2005) survey of forest health at the regional scale (all French forests; 15 million ha), we uncovered an almost fully connected network of 51 tree taxa and 157 parasitic fungal species. Our analyses revealed that the compartmentalization of the network maps out the ancient evolutionary history of seed plants, but not the ancient evolutionary history of fungal species. The very early divergence of the major fungal phyla may account for this asymmetric influence of past evolutionary history. Unlike compartmentalization, nestedness did not reflect any consistent phylogenetic signal. Instead, it seemed to reflect the ecological features of the current species, such as the relative abundance of tree species and the life-history strategies of fungal pathogens. We discussed how the evolution of host range in fungal species may account for the observed nested patterns.Overall, our analyses emphasized how the current complexity of ecological networks results from the diversification of the species and their interactions over evolutionary times. They confirmed that the current architecture of ecological networks is not only dependent on recent ecological processes
Cell-specific deletion of C1qa identifies microglia as the dominant source of C1q in mouse brain
BACKGROUND: The complement cascade not only provides protection from infection but can also mediate destructive inflammation. Complement is also involved in elimination of neuronal synapses which is essential for proper development, but can be detrimental during aging and disease. C1q, required for several of these complement-mediated activities, is present in the neuropil, microglia, and a subset of interneurons in the brain. METHODS: To identify the source(s) of C1q in the brain, the C1qa gene was selectively inactivated in the microglia or Thy-1(+) neurons in both wild type mice and a mouse model of Alzheimer’s disease (AD), and C1q synthesis assessed by immunohistochemistry, QPCR, and western blot analysis. RESULTS: While C1q expression in the brain was unaffected after inactivation of C1qa in Thy-1(+) neurons, the brains of C1qa (FL/FL) :Cx3cr1 (CreERT2) mice in which C1qa was ablated in microglia were devoid of C1q with the exception of limited C1q in subsets of interneurons. Surprisingly, this loss of C1q occurred even in the absence of tamoxifen by 1 month of age, demonstrating that Cre activity is tamoxifen-independent in microglia in Cx3cr1 (CreERT2/WganJ) mice. C1q expression in C1qa (FL/FL) : Cx3cr1 (CreERT2/WganJ) mice continued to decline and remained almost completely absent through aging and in AD model mice. No difference in C1q was detected in the liver or kidney from C1qa (FL/FL) : Cx3cr1 (CreERT2/WganJ) mice relative to controls, and C1qa (FL/FL) : Cx3cr1 (CreERT2/WganJ) mice had minimal, if any, reduction in plasma C1q. CONCLUSIONS: Thus, microglia, but not neurons or peripheral sources, are the dominant source of C1q in the brain. While demonstrating that the Cx3cr1 (CreERT2/WganJ) deleter cannot be used for adult-induced deletion of genes in microglia, the model described here enables further investigation of physiological roles of C1q in the brain and identification of therapeutic targets for the selective control of complement-mediated activities contributing to neurodegenerative disorders. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12974-017-0814-9) contains supplementary material, which is available to authorized users
- …