9 research outputs found

    Estimulação cerebral profunda na Doença de Parkinson: evidências de estudos de longa duração

    Get PDF
    A Doença de Parkinson (DP) é uma condição neurodegenerativa crônica que afeta principalmente idosos, mas pode ocorrer em adultos jovens. É a segunda doença neurodegenerativa mais comum, após o Alzheimer. A DP afeta 1% dos indivíduos acima de 60 anos em países industrializados. Sua causa envolve fatores genéticos e ambientais, como exposição a pesticidas e envelhecimento. A Estimulação Cerebral Profunda (DBS) é um tratamento que simula lesões cerebrais, melhorando sintomas motores e não motores. O presente estudo tem como objetivo analisar evidências de estudos sobre a eficácia da DBS no tratamento da DP. Trata-se de uma revisão sistemática de estudos quantitativos que utiliza as bases de dados PubMed (Medline), Cochrane Library e Scientific Electronic Library Online (SciELO) para selecionar artigos científicos. Os estudos incluídos abrangem o período de 2013 a 2023 e estão em inglês, abordando a DBS no tratamento da DP. A DBS melhora diversos sintomas motores e não motores, resultando em uma melhor qualidade de vida para os pacientes. Tais benefícios são sustentados mesmo em estágios avançados da Doença de Parkinson, a qual consiste em fornecer pulsos de corrente elétrica a áreas cerebrais profundas através de eletrodos implantados cirurgicamente, geralmente quando a terapia medicamentosa já não é eficaz. Em um estudo com 82 pacientes, a terapia com DBS resultou em uma redução de ± 52% nos sintomas motores do UPDRS sob medicação antes da cirurgia. A melhora nos sintomas motores com a estimulação, em comparação com a ausência de estimulação e medicação, foi de ± 61% no primeiro ano e ± 39% de 8 a 15 anos após a cirurgia (antes da reprogramação). A medicação foi reduzida em ± 55% após 1 ano e ± 44% após 8 a 15 anos, com a maioria dos pacientes mostrando melhorias após a reprogramação. De acordo com as literaturas analisadas, a DBS é uma terapia eficaz para a DP. Enfatiza-se a importância da inovação contínua e dos novos estudos para explorar as facetas não investigadas desse campo. Com a abordagem dos aspectos clínicos, cirúrgicos, tecnológicos e científicos, destacam-se os benefícios, limitações e desafios a serem superados. Ademais, inovações tecnológicas na DBS, como a estimulação direcional, adaptativa e a telemedicina estão sendo exploradas. Em suma, este artigo fornece evidências sobre os benefícios da DBS na DP, ressaltando a necessidade de pesquisas adicionais para otimizar tal intervenção terapêutica e melhorar a qualidade de vida dos pacientes

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Comentarios a una sentencia anunciada : el proceso Lula

    Full text link
    El centenar de textos que conforman este libro -escritos por un movimiento de prestigiosos/as juristas y abogados- desgranan el procedimiento al que fue sometido Lula. En la opinión de las y los autores de los artículos las normas no fueron observadas, y su inobservancia llevó a que se dictaminase una decisión injusta. Frases del estilo "Voy a tomar una decisión revolucionaria, dejando de lado la ley, porque por la ley no se puede condenarlo de ninguna manera”, dichas en los juicios por las más altas autoridades judiciales militares y civiles, hoy son conocidas gracias a quienes se abocaron al trabajo de escuchar los audios de aquellas sesiones, nutriendo las reflexiones que argumentan sobre el imperativo de la hora: restablecer el estado de derecho y absolver al presidente Lula Da Silva

    NEOTROPICAL CARNIVORES: a data set on carnivore distribution in the Neotropics

    Full text link
    Mammalian carnivores are considered a key group in maintaining ecological health and can indicate potential ecological integrity in landscapes where they occur. Carnivores also hold high conservation value and their habitat requirements can guide management and conservation plans. The order Carnivora has 84 species from 8 families in the Neotropical region: Canidae; Felidae; Mephitidae; Mustelidae; Otariidae; Phocidae; Procyonidae; and Ursidae. Herein, we include published and unpublished data on native terrestrial Neotropical carnivores (Canidae; Felidae; Mephitidae; Mustelidae; Procyonidae; and Ursidae). NEOTROPICAL CARNIVORES is a publicly available data set that includes 99,605 data entries from 35,511 unique georeferenced coordinates. Detection/non-detection and quantitative data were obtained from 1818 to 2018 by researchers, governmental agencies, non-governmental organizations, and private consultants. Data were collected using several methods including camera trapping, museum collections, roadkill, line transect, and opportunistic records. Literature (peer-reviewed and grey literature) from Portuguese, Spanish and English were incorporated in this compilation. Most of the data set consists of detection data entries (n = 79,343; 79.7%) but also includes non-detection data (n = 20,262; 20.3%). Of those, 43.3% also include count data (n = 43,151). The information available in NEOTROPICAL CARNIVORES will contribute to macroecological, ecological, and conservation questions in multiple spatio-temporal perspectives. As carnivores play key roles in trophic interactions, a better understanding of their distribution and habitat requirements are essential to establish conservation management plans and safeguard the future ecological health of Neotropical ecosystems. Our data paper, combined with other large-scale data sets, has great potential to clarify species distribution and related ecological processes within the Neotropics. There are no copyright restrictions and no restriction for using data from this data paper, as long as the data paper is cited as the source of the information used. We also request that users inform us of how they intend to use the data

    Comentários a uma sentença anunciada : o processo Lula

    Full text link
    “Comentários a uma sentença: o Caso Lula” é talvez o mais importante documento jurídico publicado no Brasil em décadas. A presente coletânea de artigos nasceu de um movimento espontâneo e bastante significativo de juristas brasileiros e estrangeiros que examinaram cuidadosamente a sentença proferida no âmbito do processo que tramitou na 13ª Vara Federal de Curitiba, no caso que ficou conhecido na mídia como o do “tríplex do Guarujá”. <br>De la presentación de Geraldo Prad

    Brazilian Flora 2020: Leveraging the power of a collaborative scientific network

    Full text link
    International audienceThe shortage of reliable primary taxonomic data limits the description of biological taxa and the understanding of biodiversity patterns and processes, complicating biogeographical, ecological, and evolutionary studies. This deficit creates a significant taxonomic impediment to biodiversity research and conservation planning. The taxonomic impediment and the biodiversity crisis are widely recognized, highlighting the urgent need for reliable taxonomic data. Over the past decade, numerous countries worldwide have devoted considerable effort to Target 1 of the Global Strategy for Plant Conservation (GSPC), which called for the preparation of a working list of all known plant species by 2010 and an online world Flora by 2020. Brazil is a megadiverse country, home to more of the world's known plant species than any other country. Despite that, Flora Brasiliensis, concluded in 1906, was the last comprehensive treatment of the Brazilian flora. The lack of accurate estimates of the number of species of algae, fungi, and plants occurring in Brazil contributes to the prevailing taxonomic impediment and delays progress towards the GSPC targets. Over the past 12 years, a legion of taxonomists motivated to meet Target 1 of the GSPC, worked together to gather and integrate knowledge on the algal, plant, and fungal diversity of Brazil. Overall, a team of about 980 taxonomists joined efforts in a highly collaborative project that used cybertaxonomy to prepare an updated Flora of Brazil, showing the power of scientific collaboration to reach ambitious goals. This paper presents an overview of the Brazilian Flora 2020 and provides taxonomic and spatial updates on the algae, fungi, and plants found in one of the world's most biodiverse countries. We further identify collection gaps and summarize future goals that extend beyond 2020. Our results show that Brazil is home to 46,975 native species of algae, fungi, and plants, of which 19,669 are endemic to the country. The data compiled to date suggests that the Atlantic Rainforest might be the most diverse Brazilian domain for all plant groups except gymnosperms, which are most diverse in the Amazon. However, scientific knowledge of Brazilian diversity is still unequally distributed, with the Atlantic Rainforest and the Cerrado being the most intensively sampled and studied biomes in the country. In times of “scientific reductionism”, with botanical and mycological sciences suffering pervasive depreciation in recent decades, the first online Flora of Brazil 2020 significantly enhanced the quality and quantity of taxonomic data available for algae, fungi, and plants from Brazil. This project also made all the information freely available online, providing a firm foundation for future research and for the management, conservation, and sustainable use of the Brazilian funga and flora
    corecore