71 research outputs found

    The Frequency and Radio Properties of Broad Absorption Line Quasars

    Get PDF
    A sample of 67 Broad Absorption Line quasars (BALQSOs) from the Large Bright Quasar Survey (LBQS) is used to estimate the observed and intrinsic fraction of BAL quasars in optically--selected samples at intermediate (B_J \simeq 18.5) magnitudes. The observed BALQSO fraction in the redshift range 1.5 < z < 3.0 is 15\pm3%. A well--determined, empirical, k--correction, to allow for the differences in the spectral energy distributions of non--BALQSOs and BALQSOs shortward of \simeq 2100A in the restframe, is applied to the sample. The result is an estimate of the intrinsic fraction of BALQSOs, in the redshift range 1.5 < z < 3.0, of 22+/-4%. This value is twice that commonly cited for the occurrence of BALQSOs in optically--selected samples and the figure is in reasonable agreement with that from a preliminary analysis of the SDSS Early Data Release. The fraction of BALQSOs predicted to be present in an optical survey with flux limits equivalent to that of the FIRST Bright Quasar Survey (FBQS) is shown to be \simeq 20%. The BALQSO fractions derived from the FBQS and the LBQS suggest that optically--bright BALQSOs are half as likely as non-BALQSOs to be detectable as S_1.4GHz > 1mJy radio sources.Comment: Accepted for publication in AJ, April 2003 Issu

    An Extraordinary Scattered Broad Emission Line in a Type 2 QSO

    Get PDF
    An infrared-selected, narrow-line QSO has been found to exhibit an extraordinarily broad Halpha emission line in polarized light. Both the extreme width (35,000 km/sec full-width at zero intensity) and 3,000 km/sec redshift of the line centroid with respect to the systemic velocity suggest emission in a deep gravitational potential. An extremely red polarized continuum and partial scattering of the narrow lines at a position angle common to the broad-line emission imply extensive obscuration, with few unimpeded lines of sight to the nucleus.Comment: 4 pages, 1 figure, to appear in the Astrophysical Journal Letter

    Emission-Line Properties of z > 4 Quasars

    Get PDF
    We present results of a program of high signal-to-noise spectroscopy for 44 QSOs at redshifts > 4 using the MMT and Keck observatories. The quasar spectra cover 1100 -- 1700 A in the rest frame for sources spanning a luminosity range of approximately 2 orders of magnitude. Comparisons between these data and spectra of lower redshift quasars reveal a high degree of similarity, although differences are present in the profiles and the strengths of some emission features. An examination of the luminosity dependence of the emission lines reveals evidence for a weak or absent Baldwin effect among z > 4 QSOs. We compare measurements for objects in our sample with results from other high redshift surveys characterized by different selection techniques. Distributions of equivalent widths for these different ensembles are consistent with a common parent population, suggesting that our sample is not strongly biased, or in any case, subject to selection effects that are not significantly different from other surveys, including the Sloan Digital Sky Survey. Based on this comparison, we tentatively conclude that the trends identified here are representative of high z QSOs. In particular, the data bolster indications of supersolar metallicities in these luminous, high-z sources, which support scenarios that assume substantial star formation at epochs preceding or concurrent with the QSO phenomena.Comment: 26 pages (incl. 9 figures), AASTeX v5.0, to appear in The Astrophysical Journa

    Optical Spectropolarimetry of Quasi-Stellar Objects Discovered by the Two-Micron All Sky Survey

    Full text link
    Highly polarized QSOs discovered in the Two-Micron All Sky Survey (2MASS) have been observed to determine the source(s) of optical polarization in this near-infrared color-selected sample. Broad emission lines are observed in the polarized flux spectra of most objects, and the polarization of the lines is at about the same level and position angle as the continuum. Generally, the continuum is bluer and the broad-line Balmer decrement is smaller in polarized light than for the spectrum of total flux. Narrow emission lines are much less polarized than the broad lines and continuum for all polarized objects. These properties favor scattering by material close to a partially obscured and reddened active nucleus, but exterior to the regions producing the broad-line emission, as the source of polarized flux in 2MASS QSOs. The largely unpolarized narrow-line features require that the electrons or dust polarizing the light be located at distances from the nucleus not much greater than the extent of the narrow emission-line region. In addition to known high-polarization objects, four 2MASS QSOs with AGN spectral types of 1.9 and 2 were observed to search for hidden broad emission-line regions. Broad lines were detected in polarized light for two of these objects, and the polarizing mechanism appears to be the same for these objects as for the highly polarized QSOs in the sample that readily show broad emission lines in their spectra. The observations also show that starlight from the host galaxy contributes a significant amount of optical flux, especially for the narrow-line objects, and support the suggestion that many 2MASS QSOs are measured to have low polarization simply because of dilution of the polarized AGN light by the host galaxy.Comment: 27 pages; 3 tables; 8 figures; Accepted for publication in The Astrophysical Journal (Part 1
    • …
    corecore