86 research outputs found

    Energetic-Particle Synthesis of Nanocomposite Al Alloys

    Full text link
    Ion implantation of O into Al and growth of Al(O) layers using electro-cyclotron resonance plasma and pulsed laser depositions produce composite alloys with a high density of nanometer-size oxide precipitates in an Al matrix. The precipitates impart high strength to the alloy and reduced adhesion during sliding contact, while electrical conductivity and ductility are retained. Implantation of N into Al produces similar microstructures and mechanical properties. The athermal energies of deposited atoms are a key factor in achieving these properties

    Extreme precipitation strengthening in ion-implanted nickel

    Get PDF
    Precipitation strengthening of nickel was investigated using ion-implantation alloying and nanoindentation testing for particle separations in the nanometer range and volume fractions extending above 10O/O. Ion implantation of either oxygen alone or oxygen plus aluminum at room temperature was shown to produce substantial strengthening in the ion-treated layer, with yield strengths near 5 GPa in both cases. After annealing to 550"C the oxygen-alone layer loses much of the benefit, with its yield strength reduced to 1.2 GP~ but the dual ion-implanted layer retains a substantially enhanced yield strength of over 4 GPa. Examination by transmission electron f microscopy showed very fine dispersions of 1-5 nm diameter NiO and y-A1203 precipitates in the implanted layers before annealing. The heat treatment at 550"C induced ripening of the NiO particles to sizes ranging from 7 to 20 nm, whereas the more stable ~-A1203 precipitates were little changed. The extreme strengthening we observe is in semiquantitative agreement with predictions based on the application of dispersion-hardening theory to these microstructure
    corecore