91 research outputs found

    Probing hyperbolic polaritons using infrared attenuated total reflectance micro-spectroscopy

    Full text link
    Hyperbolic polariton modes are highly appealing for a broad range of applications in nanophotonics, including surfaced enhanced sensing, sub-diffractional imaging and reconfigurable metasurfaces. Here we show that attenuated total reflectance micro-spectroscopy (ATR) using standard spectroscopic tools can launch hyperbolic polaritons in a Kretschmann-Raether configuration. We measure multiple hyperbolic and dielectric modes within the naturally hyperbolic material hexagonal boron nitride as a function of different isotopic enrichments and flake thickness. This overcomes the technical challenges of measurement approaches based on nanostructuring, or scattering scanning nearfield optical microscopy. Ultimately, our ATR approach allows us to compare the optical properties of small-scale materials prepared by different techniques systematicallyComment: 13 pages 4 figure

    Training-specific functional, neural, and hypertrophic adaptations to explosive- vs. sustained-contraction strength training

    Get PDF
    Training specificity is considered important for strength training, although the functional and underpinning physiological adaptations to different types of training, including brief explosive contractions, are poorly understood. This study compared the effects of 12 wk of explosive-contraction (ECT, n = 13) vs. sustained-contraction (SCT, n = 16) strength training vs. control (n = 14) on the functional, neural, hypertrophic, and intrinsic contractile characteristics of healthy young men. Training involved 40 isometric knee extension repetitions (3 times/wk): contracting as fast and hard as possible for ∼1 s (ECT) or gradually increasing to 75% of maximum voluntary torque (MVT) before holding for 3 s (SCT). Torque and electromyography during maximum and explosive contractions, torque during evoked octet contractions, and total quadriceps muscle volume (QUADSVOL) were quantified pre and post training. MVT increased more after SCT than ECT [23 vs. 17%; effect size (ES) = 0.69], with similar increases in neural drive, but greater QUADSVOL changes after SCT (8.1 vs. 2.6%; ES = 0.74). ECT improved explosive torque at all time points (17-34%; 0.54 ≤ ES ≤ 0.76) because of increased neural drive (17-28%), whereas only late-phase explosive torque (150 ms, 12%; ES = 1.48) and corresponding neural drive (18%) increased after SCT. Changes in evoked torque indicated slowing of the contractile properties of the muscle-tendon unit after both training interventions. These results showed training-specific functional changes that appeared to be due to distinct neural and hypertrophic adaptations. ECT produced a wider range of functional adaptations than SCT, and given the lesser demands of ECT, this type of training provides a highly efficient means of increasing function

    A construction of Frobenius manifolds with logarithmic poles and applications

    Full text link
    A construction theorem for Frobenius manifolds with logarithmic poles is established. This is a generalization of a theorem of Hertling and Manin. As an application we prove a generalization of the reconstruction theorem of Kontsevich and Manin for projective smooth varieties with convergent Gromov-Witten potential. A second application is a construction of Frobenius manifolds out of a variation of polarized Hodge structures which degenerates along a normal crossing divisor when certain generation conditions are fulfilled.Comment: 46 page

    The influence of patellar tendon and muscle-tendon unit stiffness on quadriceps explosive strength in man

    Get PDF
    What is the central question of this study? \ud Do tendon and/or muscle–tendon unit stiffness influence rate of torque development? What is the main finding and its importance? In our experimental conditions, some measures of relative (to maximal voluntary torque and tissue length) muscle–tendon unit stiffness had small correlations with voluntary/evoked rate of torque development over matching torque increments. However, absolute and relative tendon stiffness were unrelated to voluntary and evoked rate of torque development. Therefore, the muscle aponeurosis but not free tendon influences the relative rate of torque development. Factors other than tissue stiffness more strongly determine the absolute rate of torque development. The influence of musculotendinous tissue stiffness on contractile rate of torque development (RTD) remains opaque. In this study, we examined the relationships between both patellar tendon (PT) and vastus lateralis muscle–tendon unit (MTU) stiffness and the voluntary and evoked knee-extension RTD. Fifty-two healthy untrained men completed duplicate laboratory sessions. Absolute and relative RTD were measured at 50 N m or 25% maximal voluntary torque (MVT) increments from onset and sequentially during explosive voluntary and evoked octet isometric contractions (supramaximal stimulation; eight pulses at 300 Hz). Isometric MVT was also assessed. Patellar tendon and MTU stiffness were derived from simultaneous force and ultrasound recordings of the PT and vastus lateralis aponeurosis during constant RTD ramp contractions. Absolute and relative (to MVT and resting tissue length) stiffness (k) was measured over identical torque increments as RTD. Pearson's correlations tested relationships between stiffness and RTD measurements over matching absolute/relative torque increments. Absolute and relative PT k were unrelated to equivalent voluntary/evoked (r = 0.020–0.255, P = 0.069–0.891). Absolute MTU k was unrelated to voluntary or evoked RTD (r ≤ 0.191, P ≥ 0.184), but some measures of relative MTU k were related to relative voluntary/evoked RTD (e.g. RTD for 25–50% MVT, r = 0.374/0.353, P = 0.007/0.014). In conclusion, relative MTU k explained a small proportion of the variance in relative voluntary and evoked RTD (both ≤19%), despite no association of absolute MTU k or absolute/relative PT k with equivalent RTD measures. Therefore, the muscle-aponeurosis component but not free tendon was associated with relative RTD, although it seems that an overriding influence of MVT negated any relationship of absolute MTU k and absolute RTD

    Neural adaptations after 4 years vs. 12 weeks of resistance training vs. untrained

    Get PDF
    The purpose of this study was to compare the effect of resistance training (RT) duration, including years of exposure, on agonist and antagonist neuromuscular activation throughout the knee extension voluntary torque range. Fifty‐seven healthy men (untrained [UNT] n=29, short‐term RT [12WK] n=14, and long‐term RT [4YR] n=14) performed maximum and sub‐maximum (20‐80% maximum voluntary torque [MVT]) unilateral isometric knee extension contractions with torque, agonist and antagonist surface EMG recorded. Agonist EMG, including at MVT, was corrected for the confounding effects of adiposity (i.e. muscle‐electrode distance; measured with ultrasonography). Quadriceps maximum anatomical cross‐sectional area (QACSAMAX; via MRI) was also assessed. MVT was distinct for all three groups (4YR +60/+39% vs. UNT/12WK; 12WK +15% vs. UNT; 0.001<P≤0.021), and QACSAMAX was greater for 4YR (+50/+42% vs. UNT/12WK; [both] P<0.001). Agonist EMG at MVT was +44/+33% greater for 4YR/12WK ([both] P<0.001) vs. UNT; but did not differ between RT groups. The torque‐agonist EMG relationship of 4YR displayed a right/down shift with lower agonist EMG at the highest common torque (196 Nm) compared to 12WK and UNT (0.005≤P≤0.013; Effect size [ES] 0.90≤ES≤1.28). The torque‐antagonist EMG relationship displayed a lower slope with increasing RT duration (4YR<12WK<UNT; 0.001<P≤0.094; 0.56≤ES≤1.31), and antagonist EMG at the highest common torque was also lower for 4YR than UNT (‐69%; P<0.001; ES=1.18). In conclusion, 4YR and 12WK had similar agonist activation at MVT and this adaptation may be maximised during early months of RT. In contrast, inter‐muscular coordination, specifically antagonist co‐activation was progressively lower, and likely continues to adapt, with prolonged RT

    The effect of a prior eccentric lowering phase on concentric neuromechanics during multiple joint resistance exercise in older adults

    Get PDF
    Aging involves a marked decline in physical function and especially muscle power. Thus, optimal resistance exercise (RE) to improve muscle power is required for exercise prescription. An eccentric lowering phase immediately before a concentric lift (ECC-CON) may augment concentric power production, due to various proposed mechanisms (e.g., elastic recoil, pre-activation, stretch reflex, contractile history), when compared with a concentric contraction alone (CON-Only). This study compared the effect of a prior eccentric lowering phase on older adult concentric power performance (ECC-CON vs. CON-Only) during a common multiple joint isoinertial RE (i.e., leg press) with a range of loads. Twelve healthy older adult males completed two measurement sessions, consisting of ECC-CON and CON-Only contractions, performed in a counterbalanced order using 20–80% of one repetition maximum [% 1RM] loads on an instrumented isoinertial leg press dynamometer that measured power, force, and velocity. Muscle activation was assessed with surface electromyography (sEMG). For mean power ECC-CON>CON-Only, with a pronounced effect of load on the augmentation of power by ECC-CON (+19 to +55%, 35–80% 1RM, all p CON-Only, especially as load increased (+15 to 54%, 20–80% 1RM, all p < 0.005), but mean force showed more modest benefits of ECC-CON (+9 to 14%, 50–80% 1RM, all p < 0.05). In contrast, peak power and velocity were similar for ECC-CON and CON-Only with all loads. Knee and hip extensor sEMG were similar for both types of contractions. In conclusion, ECC-CON contractions produced greater power, and velocity performance in older adults than CON-Only and may provide a superior stimulus for chronic power development

    Muscle size and strength : debunking the “completely separate phenomena” suggestion

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in European Journal of Applied Physiology. The final authenticated version is available online at: http://dx.doi.org/10.1007/s00421-017-3616-

    The Human Muscle Size and Strength Relationship. Effects of Architecture, Muscle Force and Measurement Location.

    Get PDF
    Purpose This study aimed to determine the best muscle size index of muscle strength by establishing if incorporating muscle architecture measurements improved the human muscle size-strength relationship. The influence of calculating muscle force, and the location of anatomical cross-sectional area (ACSA) measurements on this relationship were also examined. Methods Fifty-two recreationally active males completed unilateral isometric knee extension strength assessments and MRI scans of the dominant thigh and knee to determine quadriceps femoris (QF) size variables (ACSA along the length of the femur, maximum ACSA [ACSAMAX] and volume [VOL]) and patellar tendon moment arm. Ultrasound images (2 sites per constituent muscle) were analyzed to quantify muscle architecture (fascicle length, pennation angle), and when combined with VOL (from MRI), facilitated calculation of QF effective PCSA (EFFPCSA) as potentially the best muscle size determinant of strength. Muscle force was calculated by dividing maximum voluntary torque (MVT) by the moment arm and addition of antagonist torque (derived from hamstring EMG). Results The associations of EFFPCSA (r=0.685), ACSAMAX (r=0.697), or VOL (r=0.773) with strength did not differ, although qualitatively VOL explained 59.8% of the variance in strength, ~11-13% greater than EFFPCSA or ACSAMAX. All muscle size variables had weaker associations with muscle force than MVT. The association of strength-ACSA at 65% of femur length (r=0.719) was greater than for ACSA measured between 10-55% and 75-90% (r=-0.042-0.633) of femur length. Conclusions In conclusion, using contemporary methods to assess muscle architecture and calculate EFFPCSA did not enhance the muscle strength-size association. For understanding/monitoring muscle size, the major determinant of strength, these findings support the assessment of muscle volume, that is independent of architecture measurements, and was most highly correlated to strength
    corecore