373 research outputs found

    Effects of rf Current on Spin Transfer Torque Induced Dynamics

    Full text link
    The impact of radiofrequency (rf) currents on the direct current (dc) driven switching dynamics in current-perpendicular-to-plane nanoscale spin valves is demonstrated. The rf currents dramatically alter the dc driven free layer magnetization reversal dynamics as well as the dc switching level. This occurs when the frequency of the rf current is tuned to a frequency range around the dc driven magnetization precession frequencies. For these frequencies, interactions between the dc driven precession and the injected rf induce frequency locking and frequency pulling effects that lead to a measurable dependence of the critical switching current on the frequency of the injected rf. Based on macrospin simulations, including dc as well as rf spin torque currents, we explain the origin of the observed effects.Comment: 5 pages, 4 figure

    Room temperature ballistic transport in InSb quantum well nanodevices

    Get PDF
    We report the room temperature observation of significant ballistic electron transport in shallow etched four-terminal mesoscopic devices fabricated on an InSb/AlInSb quantum well (QW) heterostructure with a crucial partitioned growth-buffer scheme. Ballistic electron transport is evidenced by a negative bend resistance signature which is quite clearly observed at 295 K and at current densities in excess of 106^{6} A/cm2^{2}. This demonstrates unequivocally that by using effective growth and processing strategies, room temperature ballistic effects can be exploited in InSb/AlInSb QWs at practical device dimensions

    Normalization factors for magnetic relaxation of small particle systems in non-zero magnetic field

    Get PDF
    We critically discuss relaxation experiments in magnetic systems that can be characterized in terms of an energy barrier distribution, showing that proper normalization of the relaxation data is needed whenever curves corresponding to different temperatures are to be compared. We show how these normalization factors can be obtained from experimental data by using the Tln(t/τ0)T \ln(t/\tau_0) scaling method without making any assumptions about the nature of the energy barrier distribution. The validity of the procedure is tested using a ferrofluid of Fe_3O_4 particles.Comment: 5 pages, 6 eps figures added in April 22, to be published in Phys. Rev. B 55 (1 April 1997

    Brownian Motions on Metric Graphs

    Get PDF
    Brownian motions on a metric graph are defined. Their generators are characterized as Laplace operators subject to Wentzell boundary at every vertex. Conversely, given a set of Wentzell boundary conditions at the vertices of a metric graph, a Brownian motion is constructed pathwise on this graph so that its generator satisfies the given boundary conditions.Comment: 43 pages, 7 figures. 2nd revision of our article 1102.4937: The introduction has been modified, several references were added. This article will appear in the special issue of Journal of Mathematical Physics celebrating Elliott Lieb's 80th birthda

    Discovery of a small molecule agonist of phosphatidylinositol 3-kinase p110α that reactivates latent HIV-1

    Get PDF
    Combination antiretroviral therapy (cART) can effectively suppress HIV-1 replication, but the latent viral reservoir in resting memory CD4+ T cells is impervious to cART and represents a major barrier to curing HIV-1 infection. Reactivation of latent HIV-1 represents a possible strategy for elimination of this reservoir. In this study we describe the discovery of 1,2,9,10-tetramethoxy-7H-dibenzo[de,g]quinolin-7-one (57704) which reactivates latent HIV-1 in several cell-line models of latency (J89GFP, U1 and ACH-2). 57704 also increased HIV-1 expression in 3 of 4 CD8+-depleted blood mononuclear cell preparations isolated from HIV-1-infected individuals on suppressive cART. In contrast, vorinostat increased HIV-1 expression in only 1 of the 4 donors tested. Importantly, 57704 does not induce global T cell activation. Mechanistic studies revealed that 57704 reactivates latent HIV-1 via the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway. 57704 was found to be an agonist of PI3K with specificity to the p110a isoform, but not the p110β, δ or γ isoforms. Taken together, our work suggests that 57704 could serve as a scaffold for the development of more potent activators of latent HIV-1. Furthermore, it highlights the involvement of the PI3K/Akt pathway in the maintenance of HIV-1 latency. © 2014 Doyon et al

    The HIV-1 Nef protein binds argonaute-2 and functions as a viral suppressor of RNA interference

    Get PDF
    The HIV-1 accessory protein Nef is an important virulence factor. It associates with cellular membranes and modulates the endocytic machinery and signaling pathways. Nef also increases the proliferation of multivesicular bodies (MVBs), which are sites for virus assembly and budding in macrophages. The RNA interference (RNAi) pathway proteins Ago2 and GW182 localize to MVBs, suggesting these to be sites for assembly and turnover of the miRNA-induced silencing complex (miRISC). While RNAi affects HIV replication, it is not clear if the virus encodes a suppressor activity to overcome this innate host response. Here we show that Nef colocalizes with MVBs and binds Ago2 through two highly conserved Glycine-Tryptophan (GW) motifs, mutations in which abolish Nef binding to Ago2 and reduce virus yield and infectivity. Nef also inhibits the slicing activity of Ago2 and disturbs the sorting of GW182 into exosomes resulting in the suppression of miRNA-induced silencing. Thus, besides its other activities, the HIV-1 Nef protein is also proposed to function as a viral suppressor of RNAi (VSR)
    corecore