1,441 research outputs found
Model C critical dynamics of random anisotropy magnets
We study the relaxational critical dynamics of the three-dimensional random
anisotropy magnets with the non-conserved n-component order parameter coupled
to a conserved scalar density. In the random anisotropy magnets the structural
disorder is present in a form of local quenched anisotropy axes of random
orientation. When the anisotropy axes are randomly distributed along the edges
of the n-dimensional hypercube, asymptotical dynamical critical properties
coincide with those of the random-site Ising model. However structural disorder
gives rise to considerable effects for non-asymptotic critical dynamics. We
investigate this phenomenon by a field-theoretical renormalization group
analysis in the two-loop order. We study critical slowing down and obtain
quantitative estimates for the effective and asymptotic critical exponents of
the order parameter and scalar density. The results predict complex scenarios
for the effective critical exponent approaching an asymptotic regime.Comment: 8 figures, style files include
Kondo model for the "0.7 anomaly" in transport through a quantum point contact
Experiments on quantum point contacts have highlighted an anomalous
conductance plateau at , with features suggestive of the Kondo
effect. Here we present an Anderson model for transport through a point contact
which we analyze in the Kondo limit. Hybridization to the band increases
abruptly with energy but decreases with valence, so that the background
conductance and the Kondo temperature are dominated by different valence
transitions. This accounts for the high residual conductance above . A
spin-polarized current is predicted for Zeeman splitting .Comment: 4 page
Detecting Spin-Polarized Currents in Ballistic Nanostructures
We demonstrate a mesoscopic spin polarizer/analyzer system that allows the
spin polarization of current from a quantum point contact in an in-plane
magnetic field to be measured. A transverse focusing geometry is used to couple
current from an emitter point contact into a collector point contact. At large
in-plane fields, with the point contacts biased to transmit only a single spin
(g < e^2/h), the voltage across the collector depends on the spin polarization
of the current incident on it. Spin polarizations of greater than 80% are found
for both emitter and collector at 300mK and 7T in-plane field.Comment: related papers at http://marcuslab.harvard.ed
Defect-induced condensation and central peak at elastic phase transitions
Static and dynamical properties of elastic phase transitions under the
influence of short--range defects, which locally increase the transition
temperature, are investigated. Our approach is based on a Ginzburg--Landau
theory for three--dimensional crystals with one--, two-- or three--dimensional
soft sectors, respectively. Systems with a finite concentration of
quenched, randomly placed defects display a phase transition at a temperature
, which can be considerably above the transition temperature
of the pure system. The phonon correlation function is calculated in
single--site approximation. For a dynamical central peak
appears; upon approaching , its height diverges and its width
vanishes. Using an appropriate self--consistent method, we calculate the
spatially inhomogeneous order parameter, the free energy and the specific heat,
as well as the dynamical correlation function in the ordered phase. The
dynamical central peak disappears again as the temperatur is lowered below
. The inhomogeneous order parameter causes a static central
peak in the scattering cross section, with a finite width depending on the
orientation of the external wave vector relative to the soft sector.
The jump in the specific heat at the transition temperatur of the pure system
is smeared out by the influence of the defects, leading to a distinct maximum
instead. In addition, there emerges a tiny discontinuity of the specific heat
at . We also discuss the range of validity of the mean--field
approach, and provide a more realistic estimate for the transition temperature.Comment: 11 pages, 11 ps-figures, to appear in PR
Dimensional crossover in dipolar magnetic layers
We investigate the static critical behaviour of a uniaxial magnetic layer,
with finite thickness L in one direction, yet infinitely extended in the
remaining d dimensions. The magnetic dipole-dipole interaction is taken into
account. We apply a variant of Wilson's momentum shell renormalisation group
approach to describe the crossover between the critical behaviour of the 3-D
Ising, 2-d Ising, 3-D uniaxial dipolar, and the 2-d uniaxial dipolar
universality classes. The corresponding renormalisation group fixed points are
in addition to different effective dimensionalities characterised by distinct
analytic structures of the propagator, and are consequently associated with
varying upper critical dimensions. While the limiting cases can be discussed by
means of dimensional epsilon expansions with respect to the appropriate upper
critical dimensions, respectively, the crossover features must be addressed in
terms of the renormalisation group flow trajectories at fixed dimensionality d.Comment: 25 pages, Latex, 12 figures (.eps files) and IOP style files include
Instability of the O(5) multicritical behavior in the SO(5) theory of high-Tc superconductors
We study the nature of the multicritical point in the three-dimensional
O(3)+O(2) symmetric Landau-Ginzburg-Wilson theory, which describes the
competition of two order parameters that are O(3) and O(2) symmetric,
respectively. This study is relevant for the SO(5) theory of high-Tc
superconductors, which predicts the existence of a multicritical point in the
temperature-doping phase diagram, where the antiferromagnetic and
superconducting transition lines meet.
We investigate whether the O(3)+O(2) symmetry gets effectively enlarged to
O(5) approaching the multicritical point. For this purpose, we study the
stability of the O(5) fixed point. By means of a Monte Carlo simulation, we
show that the O(5) fixed point is unstable with respect to the spin-4 quartic
perturbation with the crossover exponent , in substantial
agreement with recent field-theoretical results. This estimate is much larger
than the one-loop -expansion estimate , which has
often been used in the literature to discuss the multicritical behavior within
the SO(5) theory. Therefore, no symmetry enlargement is generically expected at
the multicritical transition.
We also perform a five-loop field-theoretical analysis of the
renormalization-group flow. It shows that bicritical systems are not in the
attraction domain of the stable decoupled fixed point. Thus, in these
systems--high-Tc cuprates should belong to this class--the multicritical point
corresponds to a first-order transition.Comment: 18 page
New features of the phase transition to superconducting state in thin films
The Halperin-Lubensky-Ma (HLM) effect of a fluctuation-induced change of the
order of phase transition in thin films of type I superconductors with
relatively small Ginzburg-Landau number is considered. Numerical data
for the free energy, the order parameter jump, the latent heat, and the
specific heat of W, Al and In are presented to reveal the influence of film
thickness and material parameters on the properties of the phase transition. We
demonstrate for the first time that in contrast to the usual notion the HLM
effect occurs in the most distinct way in superconducting films with high
critical magnetic field rather than in materials with small .
The possibility for an experimental observation of the fluctuation change of
the order of superconducting phase transition in superconducting films is
discussed.Comment: 11 pages, MikTexTeX, 3 fig, 2 Tables, corrected some typos, Submitted
J.Phys:Cond Ma
Electron transport through single Mn12 molecular magnets
We report transport measurements through a single-molecule magnet, the Mn12
derivative [Mn12O12(O2C-C6H4-SAc)16(H2O)4], in a single-molecule transistor
geometry. Thiol groups connect the molecule to gold electrodes that are
fabricated by electromigration. Striking observations are regions of complete
current suppression and excitations of negative differential conductance on the
energy scale of the anisotropy barrier of the molecule. Transport calculations,
taking into account the high-spin ground state and magnetic excitations of the
molecule, reveal a blocking mechanism of the current involving non-degenerate
spin multiplets.Comment: Accepted for Phys. Rev. Lett., 5 pages, 4 figure
Relaxational dynamics in 3D randomly diluted Ising models
We study the purely relaxational dynamics (model A) at criticality in
three-dimensional disordered Ising systems whose static critical behaviour
belongs to the randomly diluted Ising universality class. We consider the
site-diluted and bond-diluted Ising models, and the +- J Ising model along the
paramagnetic-ferromagnetic transition line. We perform Monte Carlo simulations
at the critical point using the Metropolis algorithm and study the dynamic
behaviour in equilibrium at various values of the disorder parameter. The
results provide a robust evidence of the existence of a unique model-A dynamic
universality class which describes the relaxational critical dynamics in all
considered models. In particular, the analysis of the size-dependence of
suitably defined autocorrelation times at the critical point provides the
estimate z=2.35(2) for the universal dynamic critical exponent. We also study
the off-equilibrium relaxational dynamics following a quench from T=\infty to
T=T_c. In agreement with the field-theory scenario, the analysis of the
off-equilibrium dynamic critical behavior gives an estimate of z that is
perfectly consistent with the equilibrium estimate z=2.35(2).Comment: 38 page
Deformation of Quantum Dots in the Coulomb Blockade Regime
We extend the theory of Coulomb blockade oscillations to quantum dots which
are deformed by the confining potential. We show that shape deformations can
generate sequences of conductance resonances which carry the same internal
wavefunction. This fact may cause strong correlations of neighboring
conductance peaks. We demonstrate the relevance of our results for the
interpretation of recent experiments on semiconductor quantum dots.Comment: 4 pages, Revtex, 4 postscript figure
- …