3 research outputs found

    Genotypes and phenotypes for apolipoprotein E and Alzheimer disease in the Honolulu-Asia aging study

    Get PDF
    BACKGROUND: The utility of apolipoprotein E (ApoE) type as an indicator of genetic susceptibility to Alzheimer disease (AD) depends on the reliability of typing. Although ApoE protein isoform phenotyping is generally assumed equivalent to genotyping from DNA, phenotype-genotype differences have been reported. METHODS: ApoE genotype and phenotype results were examined for 3564 older (ages 71-93 years) Japanese-American male participants of the Honolulu-Asia Aging Study, an ongoing population-based study of aging and dementia. RESULTS: Both methods demonstrated similar associations of ApoE type with AD: a direct association with ApoE4 and a less dramatic inverse association ApoE2. Advanced age did not appear to influence the ApoE4-AD association. The association with AD among ApoE4 homozygotes [odds ratio (OR) = 14.7] was higher than expected based on an observed OR of 2.0 in heterozygotes. Phenotype-genotype nonconcordance was more frequent for ApoE2 than for ApoE4. The ApoE2 phenotype occurred at a frequency of 7.9% vs a genotype frequency of 4.9%, corresponding to a probability of 56% that an individual with ApoE2 phenotype had the same genotype. CONCLUSIONS: Whereas E4 and E2 phenotypes and genotypes were comparably associated with AD, neither method would be expected to substantially improve the efficiency of case finding in the context of population screening beyond prediction based on age and education. Nonconcordance of phenotype and genotype was substantial for E2 and modest for E4 in this population. The ApoE4-AD association was independent of age

    Evolution of genes and genomes on the Drosophila phylogeny

    No full text
    Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species
    corecore