39 research outputs found

    Neuro-symbolic Models for Interpretable Time Series Classification using Temporal Logic Description

    Full text link
    Most existing Time series classification (TSC) models lack interpretability and are difficult to inspect. Interpretable machine learning models can aid in discovering patterns in data as well as give easy-to-understand insights to domain specialists. In this study, we present Neuro-Symbolic Time Series Classification (NSTSC), a neuro-symbolic model that leverages signal temporal logic (STL) and neural network (NN) to accomplish TSC tasks using multi-view data representation and expresses the model as a human-readable, interpretable formula. In NSTSC, each neuron is linked to a symbolic expression, i.e., an STL (sub)formula. The output of NSTSC is thus interpretable as an STL formula akin to natural language, describing temporal and logical relations hidden in the data. We propose an NSTSC-based classifier that adopts a decision-tree approach to learn formula structures and accomplish a multiclass TSC task. The proposed smooth activation functions for wSTL allow the model to be learned in an end-to-end fashion. We test NSTSC on a real-world wound healing dataset from mice and benchmark datasets from the UCR time-series repository, demonstrating that NSTSC achieves comparable performance with the state-of-the-art models. Furthermore, NSTSC can generate interpretable formulas that match with domain knowledge

    Improving Natural Language Inference Using External Knowledge in the Science Questions Domain

    Full text link
    Natural Language Inference (NLI) is fundamental to many Natural Language Processing (NLP) applications including semantic search and question answering. The NLI problem has gained significant attention thanks to the release of large scale, challenging datasets. Present approaches to the problem largely focus on learning-based methods that use only textual information in order to classify whether a given premise entails, contradicts, or is neutral with respect to a given hypothesis. Surprisingly, the use of methods based on structured knowledge -- a central topic in artificial intelligence -- has not received much attention vis-a-vis the NLI problem. While there are many open knowledge bases that contain various types of reasoning information, their use for NLI has not been well explored. To address this, we present a combination of techniques that harness knowledge graphs to improve performance on the NLI problem in the science questions domain. We present the results of applying our techniques on text, graph, and text-to-graph based models, and discuss implications for the use of external knowledge in solving the NLI problem. Our model achieves the new state-of-the-art performance on the NLI problem over the SciTail science questions dataset.Comment: 9 pages, 3 figures, 5 table

    Formally Specifying the High-Level Behavior of LLM-Based Agents

    Full text link
    Autonomous, goal-driven agents powered by LLMs have recently emerged as promising tools for solving challenging problems without the need for task-specific finetuned models that can be expensive to procure. Currently, the design and implementation of such agents is ad hoc, as the wide variety of tasks that LLM-based agents may be applied to naturally means there can be no one-size-fits-all approach to agent design. In this work we aim to alleviate the difficulty of designing and implementing new agents by proposing a minimalistic generation framework that simplifies the process of building agents. The framework we introduce allows the user to define desired agent behaviors in a high-level, declarative specification that is then used to construct a decoding monitor which guarantees the LLM will produce an output exhibiting the desired behavior. Our declarative approach, in which the behavior is described without concern for how it should be implemented or enforced, enables rapid design, implementation, and experimentation with different LLM-based agents. We demonstrate how the proposed framework can be used to implement recent LLM-based agents (e.g., ReACT), and show how the flexibility of our approach can be leveraged to define a new agent with more complex behavior, the Plan-Act-Summarize-Solve (PASS) agent. Lastly, we demonstrate that our method outperforms other agents on multiple popular reasoning-centric question-answering benchmarks.Comment: Preprint under revie
    corecore