43 research outputs found

    Mitochondrial haplotype diversity in the tortoise species Testudo graeca from North Africa and the Middle East

    Get PDF
    BACKGROUND: To help conservation programs of the endangered spur-thighed tortoise and to gain better insight into its systematics, genetic variation and evolution in the tortoise species Testudo graeca (Testudines: Testudinidae) was investigated by sequence analysis of a 394-nucleotide fragment of the mitochondrial 12S rRNA gene for 158 tortoise specimens belonging to the subspecies Testudo graeca graeca, Testudo graeca ibera, Testudo graeca terrestris, and a newly recognized subspecies Testudo graeca whitei. A 411-nucleotide fragment of the mitochondrial D-loop was additionally sequenced for a subset of 22 T. graeca, chosen because of their 12S gene haplotype and/or geographical origin. RESULTS: Haplotype networks generated by maximum-likelihood and neighbor-joining analyses of both the separate and the combined sequence data sets suggested the existence of two main clades of Testudo graeca, comprising Testudo graeca from northern Africa and Testudo graeca from the Turkey and the Middle East, respectively. CONCLUSION: Mitochondrial DNA haplotyping suggests that the tortoise subspecies of T. g. graeca and T. g. ibera are genetically distinct, with a calculated divergence time in the early or middle Pleistocene. Other proposed subspecies could not clearly be recognized based upon their mt haplotypes and phylogenetic position, and were either part of the T. g. graeca or of the T. g. ibera clade, suggesting that genetic evidence for the existence of most of the 15 proposed subspecies of T. graeca is weak

    HIV-1 sequence evolution in vivo after superinfection with three viral strains

    Get PDF
    With millions of people infected worldwide, the evolution of HIV-1 in vivo has been the subject of much research. Although recombinant viruses were detected early in the epidemic, evidence that HIV-1 dual infections really occurred came much later. Dual infected patients, consisting of coinfected (second infection before seroconversion) and superinfected (second infection after seroconversion) individuals, opened up a new area of HIV-1 evolution studies. Here, we describe the in-depth analysis of HIV-1 over time in a patient twice superinfected with HIV-1, first with a subtype B (B2) strain and then with CRF01_AE after initial infection with a subtype B (B1) strain

    Sialoadhesin (CD169) Expression in CD14+ Cells Is Upregulated Early after HIV-1 Infection and Increases during Disease Progression

    Get PDF
    BACKGROUND: Sialoadhesin (CD169, siglec-1 or Sn) is an activation marker seen on macrophages in chronic inflammatory diseases and in tumours, and on subsets of tissue macrophages. CD169 is highly expressed by macrophages present in AIDS-related Kaposi's sarcoma lesions. It is also increased on blood monocytes of HIV-1 infected patients with a high viral load despite antiretroviral treatment. METHODOLOGY/PRINCIPAL FINDINGS: We investigated expression of sialoadhesin in untreated HIV-1 and HHV-8 infected patients, by real-time PCR and FACS analysis to establish its expression in relation to infection and disease progression. Patients analysed were either HIV-1 seroconverters (n = 7), in the chronic phase of HIV-1 infection (n = 21), or in the AIDS stage (n = 58). Controls were HHV-8 infected, but otherwise healthy individuals (n = 20), and uninfected men having sex with men (n = 24). Sialoadhesin mRNA was significantly elevated after HIV-1, but not HHV-8 infection, and a further increase was seen in AIDS patients. Samples obtained around HIV-1 seroconversion indicated that sialoadhesin levels go up early in infection. FACS analysis of PBMCs showed that sialoadhesin protein was expressed at high levels by approximately 90% of CD14(+) and CD14(+)CD16(+)cells of HIV-1(+) patients with a concomitant 10-fold increase in sialoadhesin protein/cell compared with uninfected controls. CONCLUSIONS/SIGNIFICANCE: We have shown that sialoadhesin is induced to high levels on CD14(+) cells early after HIV-1 infection in vivo. The phenotype of the cells is maintained during disease progression, suggesting that it could serve as a marker for infection and probably contributes to the severe dysregulation of the immune system seen in AIDS

    HIV-1 dual infection is associated with faster CD4+T cell decline in a cohort of men with primary HIV infection

    Get PDF
    Background. In vitro, animal, and mathematical models suggest that human immunodeficiency virus (HIV) co- or superinfection would result in increased fitness of the pathogen and, possibly, increased virulence. However, in patients, the impact of dual HIV type 1 (HIV-1) infection on disease progression is unclear, because parameters relevant for disease progression have not been strictly analyzed. The objective of the present study is to analyze the effect of dual HIV-1 infections on disease progression in a well-defined cohort of men who have sex with men. Methods. Between 2000 and 2009, 37 men who had primary infection with HIV-1 subtype B, no indication for immediate need of combination antiretroviral therapy (cART), and sufficient follow-up were characterized with regard to dual infection or single infection and to coreceptor use. Patients were followed to estimate the effect of these parameters on clinical disease progression, as defined by the rate of CD4(+) T-cell decline and the time to initiation of cART. Results. Four patients presented with HIV-1 coinfection; 6 patients acquired HIV-1 superinfection, on average 8.5 months from their primary infection; and 27 patients remained infected with a single strain. Slopes of longitudinal CD4(+) T-cell counts and time-weighted changes from baseline were significantly steeper for patients with dual infection compared with patients with single infection. Multivariate analysis showed that the most important parameter associated with CD4(+) T-cell decline over time was dual infection (P = .001). Additionally, patients with HIV-1 coinfection had a significantly earlier start of cART (P <.0001). Conclusions. Dual HIV-1 infection is the main factor associated with CD4(+) T-cell decline in men who have untreated primary infection with HIV-1 subtype

    Generation of representative primary virus isolates from blood plasma after isolation of HIV-1 with CD44 MicroBeads

    Get PDF
    Infection of cell cultures with cell-free virus isolated from HIV-infected patients is notoriously difficult and results in a loss of viral variation. Here, we describe viral sequences from PBMC, U87.CD4.CCR5 and U87.CD4.CXCR4 cell cultures and compare them to those from blood plasma from 12 patients from whom virus particles were isolated using CD44 MicroBeads. In both PBMC and U87.CD4.CCR5 cultures, 66% of the plasma viral strains were retrieved after culturing. In addition, coreceptor use was predicted based on the env-V3 sequence and tested in U87.CD4 cells expressing either CCR5 or CXCR4. Recovery was lower for the CXCR4-using viruses. Only 50% of the virus clusters predicted to use CXCR4 could be retrieved from cell cultures, while 71% of CCR5-using strains were found in U87.CCR5 cultures. Therefore, isolation of primary viruses with CD44 MicroBeads results in a good representation in cell culture of the in vivo divergence

    Lichen planus remission is associated with a decrease of human herpes virus type 7 protein expression in plasmacytoid dendritic cells

    Get PDF
    The cause of lichen planus is still unknown. Previously we showed human herpes virus 7 (HHV-7) DNA and proteins in lesional lichen planus skin, and significantly less in non-lesional lichen planus, psoriasis or healthy skin. Remarkably, lesional lichen planus skin was infiltrated with plasmacytoid dendritic cells. If HHV-7 is associated with lichen planus, then HHV-7 replication would reduce upon lichen planus remission. HHV-7 DNA detection was performed by nested PCR and HHV-7 protein by immunohistochemistry on lesional skin biopsies from lichen planus patients before treatment and after remission. Biopsies were obtained from lichen planus lesions before treatment (n = 18 patients) and after remission (n = 13). Before treatment 61% biopsies contained HHV-7 DNA versus 8% after remission (P = 0.01). HHV-7-protein positive cell numbers diminished significantly after remission in both dermis and epidermis. Expression of HHV-7 was mainly detected in BDCA-2 positive plasmacytoid dendritic cells rather than CD-3 positive lymphocytes. HHV-7 replicates in plasmacytoid dendritic cells in lesional lichen planus skin and diminishes after remission. This study further supports our hypothesis that HHV-7 is associated with lichen planus pathogenesis

    Lack of Detection of XMRV in Seminal Plasma from HIV-1 Infected Men in The Netherlands

    Get PDF
    Background: Xenotropic murine leukaemia virus-related virus (XMRV) is a recently discovered human gammaretrovirus with yet unknown prevalence and transmission route(s). Its presence in prostate stromal fibroblasts and prostatic secretions suggests that XMRV might be sexually transmitted. We chose to study a compartment closely connected to the prostate, a location where XMRV was detected in independent studies. Seminal plasma samples from HIV-1 infected men were examined as they have an increased probability of acquiring sexually transmitted pathogens. Methodology/Principal Findings: We studied the prevalence of XMRV in 93 seminal plasma samples of 54 HIV-1 infected men living in The Netherlands with a nested PCR amplification specifically targeting the XMRV gag gene. As a control for the presence and integrity of retrovirus particles, HIV-1 was amplified from the same samples with a PCR amplification targeting the env gene of the virus, or HIV-1 was quantified with a real-time PCR amplifying part of the pol gene. Conclusions/Significance: Although HIV-1 was amplified from 25 % of the seminal plasma samples, no XMRV was detected, suggesting that either the prevalence of XMRV is very low in The Netherlands, or that XMRV is not naturally present in th

    Gene expression profile of AIDS-related Kaposi's sarcoma

    Get PDF
    BACKGROUND: Kaposi's Sarcoma (KS) is a proliferation of aberrant vascular structures lined by spindle cells, and is caused by a gammaherpes virus (HHV8/KSHV). Its course is aggravated by co-infection with HIV-1, where the timing of infection with HIV-1 and HHV8 is important for the clinical outcome. METHODS: In order to better understand the pathogenesis of KS, we have analysed tissue from two AIDS-KS lesions, and from normal skin by serial analysis of gene expression (SAGE). Semi-quantitative RT-PCR was then used to validate the results. RESULTS: The expression profile of AIDS-related KS (AIDS-KS) reflects an active process in the skin. Transcripts of HHV8 were found to be very low, and HIV-1 mRNA was not detected by SAGE, although it could be found using RT-PCR. Comparing the expression profile of AIDS-KS tissue with publicly available SAGE libraries suggested that AIDS-KS mRNA levels are most similar to those in an artificially mixed library of endothelial cells and leukocytes, in line with the description of KS lesions as containing spindle cells with endothelial characteristics, and an inflammatory infiltrate. At least 64 transcripts were found to be significantly elevated, and 28 were statistically downregulated in AIDS-KS compared to normal skin. Five of the upregulated mRNAs, including Tie 1 and sialoadhesin/CD169, were confirmed by semi-quantitative PCR to be elevated in additional AIDS-KS biopsies. Antibodies to sialoadhesin/CD169, a known marker of activated macrophages, were shown to specifically label tumour macrophages. CONCLUSION: The expression profile of AIDS-KS showed 64 genes to be significantly upregulated, and 28 genes downregulated, compared with normal skin. One of the genes with increased expression was sialoadhesin (CD169). Antibodies to sialoadhesin/CD169 specifically labelled tumour-associated macrophages, suggesting that macrophages present in AIDS-KS lesions belong to a subset of human CD169+ macrophages

    Analysis of infectious virus clones from two HIV-1 superinfection cases suggests that the primary strains have lower fitness

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Two HIV-1 positive patients, L and P, participating in the Amsterdam Cohort studies acquired an HIV-1 superinfection within half a year from their primary HIV-1 infection (Jurriaans <it>et al</it>., <it>JAIDS </it>2008, <b>47:</b>69-73). The aim of this study was to compare the replicative fitness of the primary and superinfecting HIV-1 strains of both patients. The use of isolate-specific primer sets indicated that the primary and secondary strains co-exist in plasma at all time points after the moment of superinfection.</p> <p>Results</p> <p>Biological HIV-1 clones were derived from peripheral blood CD4 + T cells at different time point, and identified as the primary or secondary virus through sequence analysis. Replication competition assays were performed with selected virus pairs in PHA/IL-2 activated peripheral blood mononuclear cells (PBMC's) and analyzed with the Heteroduplex Tracking Assay (HTA) and isolate-specific PCR amplification. In both cases, we found a replicative advantage of the secondary HIV-1 strain over the primary virus. Full-length HIV-1 genomes were sequenced to find possible explanations for the difference in replication capacity. Mutations that could negatively affect viral replication were identified in the primary infecting strains. In patient L, the primary strain has two insertions in the LTR promoter, combined with a mutation in the <it>tat </it>gene that has been associated with decreased replication capacity. The primary HIV-1 strain isolated from patient P has two mutations in the LTR that have been associated with a reduced replication rate. In a luciferase assay, only the LTR from the primary virus of patient P had lower transcriptional activity compared with the superinfecting virus.</p> <p>Conclusions</p> <p>These preliminary findings suggest the interesting scenario that superinfection occurs preferentially in patients infected with a relatively attenuated HIV-1 isolate.</p
    corecore