32 research outputs found

    New technology based on clamping for high gradient radio frequency photogun

    Get PDF
    High gradient rf photoguns have been a key development to enable several applications of high quality electron beams. They allow the generation of beams with very high peak current and low transverse emittance, satisfying the tight demands for free-electron lasers, energy recovery linacs, Compton/Thomson sources and high-energy linear colliders. In the present paper we present the design of a new rf photogun recently developed in the framework of the SPARC_LAB photoinjector activities at the laboratories of the National Institute of Nuclear Physics in Frascati (LNF-INFN, Italy). This design implements several new features from the electromagnetic point of view and, more important, a novel technology for its realization that does not involve any brazing process. From the electromagnetic point of view the gun presents high mode separation, low peak surface electric field at the iris and minimized pulsed heating on the coupler. For the realization, we have implemented a novel fabrication design that, avoiding brazing, strongly reduces the cost, the realization time and the risk of failure. Details on the electromagnetic design, low power rf measurements and high power radiofrequency and beam tests performed at the University of California in Los Angeles (UCLA) are discussed in the paper

    A Novel Particle/Photon Detector Based on a Superconducting Proximity Array of Nanodots

    Get PDF
    The current frontiers in the investigation of high-energy particles demand for new detection methods. Higher sensitivity to low-energy deposition, high-energy resolution to identify events and improve the background rejection, and large detector masses have to be developed to detect even an individual particle that weakly interacts with ordinary matter. Here, we will describe the concept and the layout of a novel superconducting proximity array which show dynamic vortex Mott insulator to metal transitions, as an ultra-sensitive compact radiation-particle detector

    Measurement of the thermal expansion coefficient of an Al-Mg alloy at ultra-low temperatures

    Full text link
    We describe a result coming from an experiment based on an Al-Mg alloy (~ 5% Mg) suspended bar hit by an electron beam and operated above and below the termperature of transition from superconducting to normal state of the material. The amplitude of the bar first longitudinal mode of oscillation, excited by the beam interacting with the bulk, and the energy deposited by the beam in the bar are the quantities measured by the experiment. These quantities, inserted in the equations describing the mechanism of the mode excitation and complemented by an independent measurement of the specific heat, allow us to determine the linear expansion coefficient of the material.Comment: 13 pages, 4 figure

    Linear Accelerator Test Facility at LNF Conceptual Design Report

    Full text link
    Test beam and irradiation facilities are the key enabling infrastructures for research in high energy physics (HEP) and astro-particles. In the last 11 years the Beam-Test Facility (BTF) of the DA{\Phi}NE accelerator complex in the Frascati laboratory has gained an important role in the European infrastructures devoted to the development and testing of particle detectors. At the same time the BTF operation has been largely shadowed, in terms of resources, by the running of the DA{\Phi}NE electron-positron collider. The present proposal is aimed at improving the present performance of the facility from two different points of view: extending the range of application for the LINAC beam extracted to the BTF lines, in particular in the (in some sense opposite) directions of hosting fundamental physics and providing electron irradiation also for industrial users; extending the life of the LINAC beyond or independently from its use as injector of the DA{\Phi}NE collider, as it is also a key element of the electron/positron beam facility. The main lines of these two developments can be identified as: consolidation of the LINAC infrastructure, in order to guarantee a stable operation in the longer term; upgrade of the LINAC energy, in order to increase the facility capability (especially for the almost unique extracted positron beam); doubling of the BTF beam-lines, in order to cope with the signicant increase of users due to the much wider range of applications.Comment: 71 page
    corecore