97 research outputs found

    Aberrant Splicing of the Senataxin Gene in a Patient with Ataxia with Oculomotor Apraxia Type 2

    Get PDF
    Ataxia with oculomotor apraxia type 2 (AOA2) is caused by a diversity of mutations within the coding region of the senataxin gene. Recently, rare noncoding senataxin mutations affecting RNA processing have been identified in AOA2. Here, we report the case of an 18-year-old woman, with classic clinical features of AOA2, who was found to harbor a mutation within senataxin intron 16. This mutation disrupts the local 5′ splice site architecture via a novel intronic frameshift mechanism, causing skipping of exon 16 with predicted disruption of the conserved DNA/RNA helicase domain. RNA processing mutations expand the growing complexity of pathogenic senataxin mutations

    Candidate Screening of the TRPC3 Gene in Cerebellar Ataxia

    Get PDF
    The hereditary cerebellar ataxias are a diverse group of neurodegenerative disorders primarily characterised by loss of balance and coordination due to dysfunction of the cerebellum and its associated pathways. Although many genetic mutations causing inherited cerebellar ataxia have been identified, a significant percentage of patients remain whose cause is unknown. The transient receptor potential (TRP) family member TRPC3 is a non-selective cation channel linked to key signalling pathways that are affected in cerebellar ataxia. Furthermore, genetic mouse models of TRPC3 dysfunction display cerebellar ataxia, making the TRPC3 gene an excellent candidate for screening ataxic patients with unknown genetic aetiology. Here, we report a genetic screen for TRPC3 mutations in a cohort of 98 patients with genetically undefined late-onset cerebellar ataxia and further ten patients with undefined episodic ataxia. We identified a number of variants but no causative mutations in TRPC3. Our findings suggest that mutations in TRPC3 do not significantly contribute to the cause of late-onset and episodic human cerebellar ataxias

    Lack of Association Between GBA Mutations and Motor Complications in European and American Parkinson's Disease Cohorts

    Get PDF
    Background: Motor complications are a consequence of the chronic dopaminergic treatment of Parkinson’s disease (PD) and include levodopa-induced dyskinesia (LIDs) and motor fluctuations (MF). Currently, evidence is on lacking whether patients with GBA-associated PD differ in their risk of developing motor complications compared to the general PD population. Objective: To evaluate the association of GBA carrier status with the development of LIDS and MFs from early PD. Methods: Motor complications were recorded prospectively in 884 patients with PD from four longitudinal cohorts using part IV of the UPDRS or MDS-UPDRS. Subjects were followed for up to 11 years and the associations of GBA mutations with the development of motor complications were assessed using parametric accelerated failure time models. Results: In 439 patients from Europe, GBA mutations were detected in 53 (12.1%) patients and a total of 168 cases of LIDs and 258 cases of MF were observed. GBA carrier status was not associated with the time to develop LIDs (HR 0.78, 95%CI 0.47 to 1.26, p = 0.30) or MF (HR 1.19, 95%CI 0.84 to 1.70, p = 0.33). In the American cohorts, GBA mutations were detected in 36 (8.1%) patients and GBA carrier status was also not associated with the progression to LIDs (HR 1.08, 95%CI 0.55 to 2.14, p = 0.82) or MF (HR 1.22, 95%CI 0.74 to 2.04, p = 0.43). Conclusion: This study does not provide evidence that GBA-carrier status is associated with a higher risk of developing motor complications. Publication of studies with null results is vital to develop an accurate summary of the clinical features that impact patients with GBA-associated PD.publishedVersio

    Lack of Association Between GBA Mutations and Motor Complications in European and American Parkinson's Disease Cohorts

    Get PDF
    ACKNOWLEDGMENTS The authors would like to thank all of the patients and controls for participation in each of the studies. Equally, we thank all members of each of the study groups and other personnel for their contributions. Funding sources for the respective studies are as follows: The Norwegian ParkWest study has been funded by the Research Council of Norway (177966), the Western Norway Regional Health Authority (911218), the Norwegian Parkinson’s Research Foundation, and Rebergs Legacy. PINE study was supported by Parkinson’s UK (G0502, G0914, G1302), Scottish Government Chief Scientist Office, BMA Doris Hillier Award, the BUPA Foundation, NHS Grampian Endowments, and RS MacDonald Trust. The NYPUM study has been funded by the Swedish Medical Research Council, the Swedish Parkinson’s disease Association, the Swedish Parkinson’s Foundation, Parkinson Research Foundation, Erling Persson Foundation, Kempe Foundation, the Swedish Brain Foundation (Hjarnfonden), and the Vasterbotten County Council. AAS, JMG and GA are supported by the Research Council of Norway (287842). BLF acknowledges support through donations to the UCLA Clinical Neurogenomics Research Center. CK is supported by the NIH grant F32AG063442. The PEG study was supported by NIH/NIEHS grants R01-ES010544 and U54-ES012078. Publication of this manuscript was supported under the The Michael J. Fox Foundation: 2021 RFA: Accelerating Publication of Parkinson’s Disease Replication Data.Peer reviewedPublisher PD

    Bioinformatics-Based Identification of Expanded Repeats: A Non-reference Intronic Pentamer Expansion in RFC1 Causes CANVAS

    Get PDF
    Genomic technologies such as next-generation sequencing (NGS) are revolutionizing molecular diagnostics and clinical medicine. However, these approaches have proven inefficient at identifying pathogenic repeat expansions. Here, we apply a collection of bioinformatics tools that can be utilized to identify either known or novel expanded repeat sequences in NGS data. We performed genetic studies of a cohort of 35 individuals from 22 families with a clinical diagnosis of cerebellar ataxia with neuropathy and bilateral vestibular areflexia syndrome (CANVAS). Analysis of whole-genome sequence (WGS) data with five independent algorithms identified a recessively inherited intronic repeat expansion [(AAGGG)exp] in the gene encoding Replication Factor C1 (RFC1). This motif, not reported in the reference sequence, localized to an Alu element and replaced the reference (AAAAG)11 short tandem repeat. Genetic analyses confirmed the pathogenic expansion in 18 of 22 CANVAS-affected families and identified a core ancestral haplotype, estimated to have arisen in Europe more than twenty-five thousand years ago. WGS of the four RFC1-negative CANVAS-affected families identified plausible variants in three, with genomic re-diagnosis of SCA3, spastic ataxia of the Charlevoix-Saguenay type, and SCA45. This study identified the genetic basis of CANVAS and demonstrated that these improved bioinformatics tools increase the diagnostic utility of WGS to determine the genetic basis of a heterogeneous group of clinically overlapping neurogenetic disorders

    Mutations in SLC20A2 are a major cause of familial idiopathic basal ganglia calcification

    Get PDF
    Familial idiopathic basal ganglia calcification (IBGC) or Fahr's disease is a rare neurodegenerative disorder characterized by calcium deposits in the basal ganglia and other brain regions, which is associated with neuropsychiatric and motor symptoms. Familial IBGC is genetically heterogeneous and typically transmitted in an autosomal dominant fashion. We performed a mutational analysis of SLC20A2, the first gene found to cause IBGC, to assess its genetic contribution to familial IBGC. We recruited 218 subjects from 29 IBGC-affected families of varied ancestry and collected medical history, neurological exam, and head CT scans to characterize each patient's disease status. We screened our patient cohort for mutations in SLC20A2. Twelve novel (nonsense, deletions, missense, and splice site) potentially pathogenic variants, one synonymous variant, and one previously reported mutation were identified in 13 families. Variants predicted to be deleterious cosegregated with disease in five families. Three families showed nonsegregation with clinical disease of such variants, but retrospective review of clinical and neuroimaging data strongly suggested previous misclassification. Overall, mutations in SLC20A2 account for as many as 41 % of our familial IBGC cases. Our screen in a large series expands the catalog of SLC20A2 mutations identified to date and demonstrates that mutations in SLC20A2 are a major cause of familial IBGC. Non-perfect segregation patterns of predicted deleterious variants highlight the challenges of phenotypic assessment in this condition with highly variable clinical presentation
    corecore