6 research outputs found

    Spatial and Temporal Changes of Tidal Inlet Using Object-Based Image Analysis of Multibeam Echosounder Measurements: A Case from the Lagoon of Venice, Italy

    Get PDF
    Scientific exploration of seabed substrata has significantly progressed in the last few years. Hydroacoustic methods of seafloor investigation, including multibeam echosounder measurements, allow us to map large areas of the seabed with unprecedented precision. Through time-series of hydroacoustic measurements, it was possible to determine areas with distinct characteristics in the inlets of the Lagoon of Venice, Italy. Their temporal variability was investigated. Monitoring the changes was particularly relevant, considering the presence at the channel inlets of mobile barriers of the Experimental Electromechanical Module (MoSE) project installed to protect the historical city of Venice from flooding. The detection of temporal and spatial changes was performed by comparing seafloor maps created using object-based image analysis and supervised classifiers. The analysis included extraction of 25 multibeam echosounder bathymetry and backscatter features. Their importance was estimated using an objective approach with two feature selection methods. Moreover, the study investigated how the accuracy of classification could be affected by the scale of object-based segmentation. The application of the classification method at the proper scale allowed us to observe habitat changes in the tidal inlet of the Venice Lagoon, showing that the sediment substrates located in the Chioggia inlet were subjected to very dynamic changes. In general, during the study period, the area was enriched in mixed and muddy sediments and was depleted in sandy deposits. This study presents a unique methodological approach to predictive seabed sediment composition mapping and change detection in a very shallow marine environment. A consistent, repeatable, logical site-specific workflow was designed, whose main assumptions could be applied to other seabed mapping case studies in both shallow and deep marine environments, all over the world

    High resolution multibeam and hydrodynamic datasets of tidal channels and inlets of the Venice Lagoon

    Get PDF
    Tidal channels are crucial for the functioning of wetlands, though their morphological properties, which are relevant for seafloor habitats and flow, have been understudied so far. Here, we release a dataset composed of Digital Terrain Models (DTMs) extracted from a total of 2,500 linear kilometres of high-resolution multibeam echosounder (MBES) data collected in 2013 covering the entire network of tidal channels and inlets of the Venice Lagoon, Italy. The dataset comprises also the backscatter (BS) data, which reflect the acoustic properties of the seafloor, and the tidal current fields simulated by means of a high-resolution three-dimensional unstructured hydrodynamic model. The DTMs and the current fields help define how morphological and benthic properties of tidal channels are affected by the action of currents. These data are of potential broad interest not only to geomorphologists, oceanographers and ecologists studying the morphology, hydrodynamics, sediment transport and benthic habitats of tidal environments, but also to coastal engineers and stakeholders for cost-effective monitoring and sustainable management of this peculiar shallow coastal system

    Data Descriptor: high resolution multibeam and hydrodynamic datasets of tidal channels and inlets of the Venice Lagoon

    Get PDF
    Tidal channels are crucial for the functioning of wetlands, though their morphological properties, which are relevant for seafloor habitats and flow, have been understudied so far. Here, we release a dataset composed of Digital Terrain Models (DTMs) extracted from a total of 2,500 linear kilometres of high-resolution multibeam echosounder (MBES) data collected in 2013 covering the entire network of tidal channels and inlets of the Venice Lagoon, Italy. The dataset comprises also the backscatter (BS) data, which reflect the acoustic properties of the seafloor, and the tidal current fields simulated by means of a high-resolution three-dimensional unstructured hydrodynamic model. The DTMs and the current fields help define how morphological and benthic properties of tidal channels are affected by the action of currents. These data are of potential broad interest not only to geomorphologists, oceanographers and ecologists studying the morphology, hydrodynamics, sediment transport and benthic habitats of tidal environments, but also to coastal engineers and stakeholders for cost-effective monitoring and sustainable management of this peculiar shallow coastal system

    Combining remote sensing analysis with machine learning to evaluate short-term coastal evolution trend in the shoreline of Venice

    No full text
    With increasing storminess and incessant sea-level rise, coastal erosion is becoming a primary issue along many litto-rals in the world. To cope with present and future climate change scenarios, it is important to map the shoreline posi-tion over years and assess the coastal erosion trends to select the best risk management solutions and guarantee a sustainable management of communities, structures, and ecosystems. However, this objective is particularly challeng-ing on gentle-sloping sandy coasts, where also small sea-level changes trigger significant morphological evolutions. This study presents a multidisciplinary study combining satellite images with Machine Learning and GIS-based spatial tools to analyze short-term shoreline evolution trends and detect erosion hot-spots on the Venice coast over the period 2015-2019. Firstly, advanced image preprocessing, which is not frequently adopted in coastal erosion studies, was performed on satellite images downloaded within the same tidal range. Secondly, different Machine Learning classifi-cation methods were tested to accurately define shoreline position by recognizing the land-sea interface in each image. Finally, the application of the Digital Shoreline Analysis System tool was performed to evaluate and visualize coastal changes over the years.Overall, the case study littoral reveals to be stable or mainly subjected to accretion. This is probably due to the high presence of coastal protection structures that stabilize the beaches, enhancing deposition processes. In detail, with re-spect to the total length of the considered shoreline (about 83 km), 5 % of the coast is eroding, 36 % is stable, 52 % is accreting and 7 % is not evaluable. Despite a significant coastal erosion risk was not recognized within this region, well-delimited erosion hot-spots were mapped in correspondence of Caorle, Jesolo and Cavallino-Treporti municipal-ities. These areas deserve higher attention for territorial planning and prioritization of adaptation measures, facing climate change scenarios and sea-level rise emergencies in the context of Integrated Coastal Zone Management
    corecore