67 research outputs found

    Low temperature magnetic structure of CeRhIn5_5 by neutron diffraction on absorption-optimized samples

    Full text link
    Two aspects of the ambient pressure magnetic structure of heavy fermion material CeRhIn5_5 have remained under some debate since its discovery: whether the structure is indeed an incommensurate helix or a spin density wave, and what is the precise magnitude of the ordered magnetic moment. By using a single crystal sample optimized for hot neutrons to minimize neutron absorption by Rh and In, here we report an ordered moment of m=0.54(2) μBm=0.54(2)~\mu_B. In addition, by using spherical neutron polarimetry measurements on a similar single crystal sample, we have confirmed the helical nature of the magnetic structure, and identified a single chiral domain

    Charge carrier localization induced by excess Fe in the Fe1+y(Te,Se) superconductor system

    Get PDF
    We have investigated the effect of Fe nonstoichiometry on properties of the Fe1+y(Te, Se) superconductor system by means of resistivity, Hall coefficient, magnetic susceptibility, and specific heat measurements. We find that the excess Fe at interstitial sites of the (Te, Se) layers not only suppresses superconductivity, but also results in a weakly localized electronic state. We argue that these effects originate from the magnetic coupling between the excess Fe and the adjacent Fe square planar sheets, which favors a short-range magnetic order.Comment: 15 pages, 6 figures accepted for publication in PR

    Band-dependent normal-state coherence in Sr2_{2}RuO4_{4}: Evidence from Nernst effect and thermopower measurements

    Full text link
    We present the first measurement on Nernst effect in the normal state of odd-parity, spin-triplet superconductor Sr2_{2}RuO4_{4}. Below 100 K, the Nernst signal was found to be negative, large, and, as a function of magnetic field, nonlinear. Its magnitude increases with the decreasing temperature until reaching a maximum around T∗T^* ≈\approx 20 - 25 K, below which it starts to decrease linearly as a function of temperature. The large value of the Nernst signal appears to be related to the multiband nature of the normal state and the nonlinearity to band-dependent magnetic fluctuation in Sr2_{2}RuO4_{4}. We argue that the sharp decrease in Nernst signal below T∗T^* is due to the suppression of quasiparticle scattering and the emergence of band-dependent coherence in the normal state. The observation of a sharp kink in the temperature dependent thermopower around T∗T^* and a sharp drop of Hall angle at low temperatures provide additional support to this picture.Comment: 4 pages, 4 figures; added figures, revised content; accepted by PR

    Competing magnetic fluctuations in Sr3Ru2O7 probed by Ti doping

    Full text link
    We report the effect of nonmagnetic Ti4+ impurities on the electronic and magnetic properties of Sr3Ru2O7. Small amounts of Ti suppress the characteristic peak in magnetic susceptibility near 16 K and result in a sharp upturn in specific heat. The metamagnetic quantum phase transition and related anomalous features are quickly smeared out by small amounts of Ti. These results provide strong evidence for the existence of competing magnetic fluctuations in the ground state of Sr3Ru2O7. Ti doping suppresses the low temperature antiferromagnetic interactions that arise from Fermi surface nesting, leaving the system in a state dominated by ferromagnetic fluctuations.Comment: 5 pages, 4 figures, 1 tabl

    Unconventional quantum oscillations in mesoscopic rings of spin-triplet superconductor Sr2RuO4

    Full text link
    Odd-parity, spin-triplet superconductor Sr2RuO4 has been found to feature exotic vortex physics including half-flux quanta trapped in a doubly connected sample and the formation of vortex lattices at low fields. The consequences of these vortex states on the low-temperature magnetoresistive behavior of mesoscopic samples of Sr2RuO4 were investigated in this work using ring device fabricated on mechanically exfoliated single crystals of Sr2RuO4 by photolithography and focused ion beam. With the magnetic field applied perpendicular to the in-plane direction, thin-wall rings of Sr2RuO4 were found to exhibit pronounced quantum oscillations with a conventional period of the full-flux quantum even though the unexpectedly large amplitude and the number of oscillations suggest the observation of vortex-flow-dominated magnetoresistance oscillations rather than a conventional Little-Parks effect. For rings with a thick wall, two distinct periods of quantum oscillations were found in high and low field regimes, respectively, which we argue to be associated with the "lock-in" of a vortex lattice in these thick-wall rings. No evidence for half-flux-quantum resistance oscillations were identified in any sample measured so far without the presence of an in-plane field.Comment: 5 pages, 4 figure
    • …
    corecore