303 research outputs found

    Ariel - Volume 2 Number 2

    Get PDF
    Editors Delvyn C. Case, Jr. Paul M. Fernhoff News Editors Richard Bonanno Daniel B. Gould Ronald A. Hoffman Lay-Out Editor Carol Dolinskas Sports Editor James J. Nocon Contributing Editors MichaeI J. Blecker Lin Sey Edwards Jack Guralnik W. Cherry Light Features Editor Donald A. Bergman Stephen P. Flynn Business Manager Nick Grego Public Relations Robin A. Edward

    Efficient delivery of small interfering RNA for inhibition of IL-12p40 expression in vivo

    Get PDF
    Background: RNA interference is an evolutionary conserved immune response mechanism that can be used as a tool to provide novel insights into gene function and structure. The ability to efficiently deliver small interfering RNA to modulate gene expression in vivo may provide new therapeutic approaches to currently intractable diseases. Methods: In vitro, siRNA targeting IL-12p40 was delivered to the murine macrophage cell line (J774A.1) encapsulated in a liposome with an IL-12 inducing agent (LPS/IFN-γ) over a number of time points. Controls included a variety of non-target specific siRNA reagents. Supernatants were analyzed for cytokine production while the cells were removed for mRNA profiling. In vivo, siRNA-targeting IL-12p40 was delivered to the murine peritoneal cavity in a therapeutic fashion, after endotoxin (LPS) challenge. Cells from the peritoneal cavity were removed by lavage and analyzed by flow cytometry. Levels of IL-12 present in lavage and in serum were also examined by ELISA. Results: In this report, we show that IL-12p40 siRNA can specifically silence macrophage expression of IL-12p40 mRNA and IL-12p70 protein in vitro. We extend this finding to demonstrate that delivery of liposome encapsulated siRNA targeting IL-12p40 to the murine peritoneal cavity can modulate an inflammatory stimulus in vivo. Furthermore, specific siRNA can be used therapeutically after endotoxin challenge to reduce both the local and systemic inflammatory response. Thus, the delivery of siRNA can be used to elicit specific non-permanent inhibition of endogenous protein expression. Conclusion: In vitro silencing of IL-12p40 using siRNA at selected doses leads to specific knockdown of IL-12p70 protein production without inducing type I interferons. Furthermore, siRNA targeting murine IL-12p40 can be used therapeutically to counter an inflammatory response in vivo

    Efficient delivery of small interfering RNA for inhibition of IL-12p40 expression in vivo

    Get PDF
    Background: RNA interference is an evolutionary conserved immune response mechanism that can be used as a tool to provide novel insights into gene function and structure. The ability to efficiently deliver small interfering RNA to modulate gene expression in vivo may provide new therapeutic approaches to currently intractable diseases. Methods: In vitro, siRNA targeting IL-12p40 was delivered to the murine macrophage cell line (J774A.1) encapsulated in a liposome with an IL-12 inducing agent (LPS/IFN-γ) over a number of time points. Controls included a variety of non-target specific siRNA reagents. Supernatants were analyzed for cytokine production while the cells were removed for mRNA profiling. In vivo, siRNA-targeting IL-12p40 was delivered to the murine peritoneal cavity in a therapeutic fashion, after endotoxin (LPS) challenge. Cells from the peritoneal cavity were removed by lavage and analyzed by flow cytometry. Levels of IL-12 present in lavage and in serum were also examined by ELISA. Results: In this report, we show that IL-12p40 siRNA can specifically silence macrophage expression of IL-12p40 mRNA and IL-12p70 protein in vitro. We extend this finding to demonstrate that delivery of liposome encapsulated siRNA targeting IL-12p40 to the murine peritoneal cavity can modulate an inflammatory stimulus in vivo. Furthermore, specific siRNA can be used therapeutically after endotoxin challenge to reduce both the local and systemic inflammatory response. Thus, the delivery of siRNA can be used to elicit specific non-permanent inhibition of endogenous protein expression. Conclusion: In vitro silencing of IL-12p40 using siRNA at selected doses leads to specific knockdown of IL-12p70 protein production without inducing type I interferons. Furthermore, siRNA targeting murine IL-12p40 can be used therapeutically to counter an inflammatory response in vivo

    Ariel - Volume 3 Number 1

    Get PDF
    Editors Richard J. Bonanno Robin A. Edwards Associate Editors Steven Ager Stephen Flynn Tom Williams Lay-out Editor Eugenia Miller Contributing Editors Michael J. Blecker Milton Parker James J. Nocon Lynne Porter Editors Emeritus Delvyn C. Case, Jr. Paul M. Fernhof

    Efficient delivery of small interfering RNA for inhibition of IL-12p40 expression in vivo

    Get PDF
    Background: RNA interference is an evolutionary conserved immune response mechanism that can be used as a tool to provide novel insights into gene function and structure. The ability to efficiently deliver small interfering RNA to modulate gene expression in vivo may provide new therapeutic approaches to currently intractable diseases. Methods: In vitro, siRNA targeting IL-12p40 was delivered to the murine macrophage cell line (J774A.1) encapsulated in a liposome with an IL-12 inducing agent (LPS/IFN-γ) over a number of time points. Controls included a variety of non-target specific siRNA reagents. Supernatants were analyzed for cytokine production while the cells were removed for mRNA profiling. In vivo, siRNA-targeting IL-12p40 was delivered to the murine peritoneal cavity in a therapeutic fashion, after endotoxin (LPS) challenge. Cells from the peritoneal cavity were removed by lavage and analyzed by flow cytometry. Levels of IL-12 present in lavage and in serum were also examined by ELISA. Results: In this report, we show that IL-12p40 siRNA can specifically silence macrophage expression of IL-12p40 mRNA and IL-12p70 protein in vitro. We extend this finding to demonstrate that delivery of liposome encapsulated siRNA targeting IL-12p40 to the murine peritoneal cavity can modulate an inflammatory stimulus in vivo. Furthermore, specific siRNA can be used therapeutically after endotoxin challenge to reduce both the local and systemic inflammatory response. Thus, the delivery of siRNA can be used to elicit specific non-permanent inhibition of endogenous protein expression. Conclusion: In vitro silencing of IL-12p40 using siRNA at selected doses leads to specific knockdown of IL-12p70 protein production without inducing type I interferons. Furthermore, siRNA targeting murine IL-12p40 can be used therapeutically to counter an inflammatory response in vivo

    Ariel - Volume 2 Number 7

    Get PDF
    Editors Richard J. Bonanno Robin A. Edwards Associate Editors Steven Ager Stephen Flynn Shep Dickman Tom Williams Lay-out Editor Eugenia Miller Contributing Editors Michael J. Blecker W. Cherry Light James J. Nocon Lynne Porter Editors Emeritus Delvyn C. Case, Jr. Paul M. Fernhof

    White Light-Informed Optical Properties Improve Ultrasound-Guided Fluorescence Tomography of Photoactive Protoporphyrin IX

    Get PDF
    Subsurface fluorescence imaging is desirable for medical applications, including protoporphyrin-IX (PpIX)-based skin tumor diagnosis, surgical guidance, and dosimetry in photodynamic therapy. While tissue optical properties and heterogeneities make true subsurface fluorescence mapping an ill-posed problem, ultrasound-guided fluorescence-tomography (USFT) provides regional fluorescence mapping. Here USFT is implemented with spectroscopic decoupling of fluorescence signals (auto-fluorescence, PpIX, photoproducts), and white light spectroscopy-determined bulk optical properties. Segmented US images provide a priori spatial information for fluorescence reconstruction using region-based, diffuse FT. The method was tested in simulations, tissue homogeneous and inclusion phantoms, and an injected-inclusion animal model. Reconstructed fluorescence yield was linear with PpIX concentration, including the lowest concentration used, 0.025  μg/ml . White light spectroscopy informed optical properties, which improved fluorescence reconstruction accuracy compared to the use of fixed, literature-based optical properties, reduced reconstruction error and reconstructed fluorescence standard deviation by factors of 8.9 and 2.0, respectively. Recovered contrast-to-background error was 25% and 74% for inclusion phantoms without and with a 2-mm skin-like layer, respectively. Preliminary mouse-model imaging demonstrated system feasibility for subsurface fluorescence measurement in vivo. These data suggest that this implementation of USFT is capable of regional PpIX mapping in human skin tumors during photodynamic therapy, to be used in dosimetric evaluations

    Ariel - Volume 2 Number 6

    Get PDF
    Editors Richard J. Bonanno Robin A. Edwards Associate Editors Steven Ager Stephen Flynn Shep Dickman Tom Williams Lay-out Editor Eugenia Miller Contributing Editors Michael J. Blecker W. Cherry Light James J. Nocon Lynne Porter Editors Emeritus Delvyn C. Case, Jr. Paul M. Fernhof
    corecore