269 research outputs found
A casein kinase 1 prevents expulsion of the oocyte meiotic spindle into a polar body by regulating cortical contractility.
During female meiosis, haploid eggs are generated from diploid oocytes. This reduction in chromosome number occurs through two highly asymmetric cell divisions, resulting in one large egg and two small polar bodies. Unlike mitosis, where an actomyosin contractile ring forms between the sets of segregating chromosomes, the meiotic contractile ring forms on the cortex adjacent to one spindle pole, then ingresses down the length of the spindle to position itself at the exact midpoint between the two sets of segregating chromosomes. Depletion of casein kinase 1 gamma (CSNK-1) in Caenorhabditis elegans led to the formation of large polar bodies that contain all maternal DNA, because the contractile ring ingressed past the spindle midpoint. Depletion of CSNK-1 also resulted in the formation of deep membrane invaginations during meiosis, suggesting an effect on cortical myosin. Both myosin and anillin assemble into dynamic rho-dependent cortical patches that rapidly disassemble in wild-type embryos. CSNK-1 was required for disassembly of both myosin patches and anillin patches. Disassembly of anillin patches was myosin independent, suggesting that CSNK-1 prevents expulsion of the entire meiotic spindle into a polar body by negatively regulating the rho pathway rather than through direct inhibition of myosin
On the Origin of Sensory Errors
Estimation of perceptual variables is imprecise and prone to errors. Although the properties of these perceptual errors are well characterized, the physiological basis for these errors is unknown. One previously proposed explanation for these errors is the trial-by-trial variability of the responses of sensory neurons that encode the percept. Initially, it would seem that a complicated electrophysiological experiment would need to be performed to test this hypothesis. However, using a strong theoretical framework, I demonstrate that it is possible to determine statistical characteristics of the physiological mechanism responsible for perceptual errors solely from a behavioral experiment. The basis for this theoretical framework is that different stochastic distributions (e.g., Poisson, Gaussian, etc.) will behave differently under temporal constraints. The results of this model connect easily with existing psychophysical techniques; additionally, I extend the theory here and show that it can generate realistic tuning curves that can predict perceptual acuity as a function of stimulus magnitude and duration. Following the analytical work, I performed the necessary experiments to test the model. I demonstrate that the physiological basis of perceptual error has a constant level of noise (i.e., independent of stimulus intensity and duration). By comparing these results to previous physiological measurements, I show that perceptual errors cannot be due to the variability during the encoding stage. Further, I show a very close fit between the theoretically generated tuning curve and the behavioral results, which gives more insight into the error generation mechanism. Finally, I find that the time window over which perceptual evidence is integrated lasts no more that ~230ms. I discuss these results and others, and speculate on sources of error that may be consistent with my behavioral measurements
Reversible DNA micro-patterning using the fluorous effect
We describe a new method for the immobilisation of DNA into defined patterns with sub-micron resolution, using the fluorous effect. The method is fully reversible via a simple solvent wash, allowing the patterning, regeneration and re-patterning of surfaces with no degradation in binding efficiency following multiple removal/attachment cycles of different DNA sequences
Properties of Low-Lying Heavy-Light Mesons
We present preliminary results for the B meson decay constant and masses of
low-lying heavy-light mesons in the static limit. Calculations were performed
on the lattice in the quenched approximation using multistate smearing
functions generated from a Hamiltonian for a spinless relativistic quark. The
2S--1S and 1P--1S mass splittings are measured. Using the 1P--1S charmonium
splitting to set the overall scale, the ground state decay constant, f_B, is
319 +- 11 (stat) MeV.Comment: 8 pages, 9 figures, UCLA/92/TEP/4
Dynactin-dependent cortical dynein and spherical spindle shape correlate temporally with meiotic spindle rotation in Caenorhabditis elegans.
Oocyte meiotic spindles orient with one pole juxtaposed to the cortex to facilitate extrusion of chromosomes into polar bodies. In Caenorhabditis elegans, these acentriolar spindles initially orient parallel to the cortex and then rotate to the perpendicular orientation. To understand the mechanism of spindle rotation, we characterized events that correlated temporally with rotation, including shortening of the spindle in the pole-to pole axis, which resulted in a nearly spherical spindle at rotation. By analyzing large spindles of polyploid C. elegans and a related nematode species, we found that spindle rotation initiated at a defined spherical shape rather than at a defined spindle length. In addition, dynein accumulated on the cortex just before rotation, and microtubules grew from the spindle with plus ends outward during rotation. Dynactin depletion prevented accumulation of dynein on the cortex and prevented spindle rotation independently of effects on spindle shape. These results support a cortical pulling model in which spindle shape might facilitate rotation because a sphere can rotate without deforming the adjacent elastic cytoplasm. We also present evidence that activation of spindle rotation is promoted by dephosphorylation of the basic domain of p150 dynactin
Masses and Decay Constants of Heavy-Light Mesons Using the Multistate Smearing Technique
We present results for f_B and masses of low-lying heavy-light mesons.
Calculations were performed in the quenched approximation using multistate
smearing functions generated from a spinless relativistic quark model
Hamiltonian. Beta values range from 5.7 to 6.3, and light quark masses
corresponding to pion masses as low as 300 MeV are computed at each value. We
use the 1P--1S charmonium splitting to set the overall scale.Comment: 9 pages, 13 figures, and 5 tables as a single 193K compressed and
uuencoded Postscript file, FERMILAB--CONF--93/376-
Kinesin-1 Prevents Capture of the Oocyte Meiotic Spindle by the Sperm Aster
SummaryCentrioles are lost during oogenesis and inherited from the sperm at fertilization. In the zygote, the centrioles recruit pericentriolar proteins from the egg to form a mature centrosome that nucleates a sperm aster. The sperm aster then captures the female pronucleus to join the maternal and paternal genomes. Because fertilization occurs before completion of female meiosis, some mechanism must prevent capture of the meiotic spindle by the sperm aster. Here we show that in wild-type Caenorhabditis elegans zygotes, maternal pericentriolar proteins are not recruited to the sperm centrioles until after completion of meiosis. Depletion of kinesin-1 heavy chain or its binding partner resulted in premature centrosome maturation during meiosis and growth of a sperm aster that could capture the oocyte meiotic spindle. Kinesin prevents recruitment of pericentriolar proteins by coating the sperm DNA and centrioles and thus prevents triploidy by a nonmotor mechanism
Evaluation of nanopore sequencing for epigenetic epidemiology: a comparison with DNA methylation microarrays
Most epigenetic epidemiology to date has utilized microarrays to identify positions in the genome where variation in DNA methylation is associated with environmental exposures or disease. However, these profile less than 3% of DNA methylation sites in the human genome, potentially missing affected loci and preventing the discovery of disrupted biological pathways. Third generation sequencing technologies, including Nanopore sequencing, have the potential to revolutionise the generation of epigenetic data, not only by providing genuine genome-wide coverage but profiling epigenetic modifications direct from native DNA. Here we assess the viability of using Nanopore sequencing for epidemiology by performing a comparison with DNA methylation quantified using the most comprehensive microarray available, the Illumina EPIC array. We implemented a CRISPR-Cas9 targeted sequencing approach in concert with Nanopore sequencing to profile DNA methylation in three genomic regions to attempt to rediscover genomic positions that existing technologies have shown are differentially methylated in tobacco smokers. Using Nanopore sequencing reads, DNA methylation was quantified at 1779 CpGs across three regions, providing a finer resolution of DNA methylation patterns compared to the EPIC array. The correlation of estimated levels of DNA methylation between platforms was high. Furthermore, we identified 12 CpGs where hypomethylation was significantly associated with smoking status, including 10 within the AHRR gene. In summary, Nanopore sequencing is a valid option for identifying genomic loci where large differences in DNAm are associated with a phenotype and has the potential to advance our understanding of the role differential methylation plays in the aetiology of complex disease
- …