6,390 research outputs found
Low-Input-Voltage, Low-Power Boost Converter Design Issues
Issues associated with boost converter design and performance are investigated when a low input voltage is used. Low-input-voltage sources include single fuel cells, single solar cells, and thermoelectric devices. The primary context is interfacing single micro fuel cells to portable electronic loads, such as mobile phones. Efficiency and circuit startup are the two most difficult issues for a low-cost design. It is shown in theory and experiment that the boost converter has a voltage collapse point. A simple startup technique is proposed that is appropriate for some applications
Subclinical Thyroid Disorders and Cognitive Performance Among Adolescents in the United States
Background: Thyroid hormone plays a crucial role in the growth and function of the central nervous system. The purpose of the study was to examine the relationships between the status of subclinical thyroid conditions and cognition among adolescents in the United States. Methods: Study sample included 1,327 adolescents 13 to 16 years old who participated in the Third National Health and Nutrition Examination Survey (NHANES III). Serum thyroxine (T4) and thyroid stimulating hormone (TSH) were measured and subclinical hypothyroidism, subclinical hyperthyroidism, and euthyroid groups were defined. Cognitive performance was assessed using the subscales of the Wide Range Achievement Test-Revised (WRAT-R) and the Wechsler Intelligence Scale for Children-Revised (WISC-R). The age-corrected scaled scores for arithmetic, reading, block design, and digit span were derived from the cognitive assessments. Results: Subclinical hypothyroidism was found in 1.7% and subclinical hyperthyroidism was found in 2.3% of the adolescents. Cognitive assessment scores on average tended to be lower in adolescents with subclinical hyperthyroidism and higher in those with subclinical hypothyroidism than the score for the euthyroid group. Adolescents with subclinical hypothyroidism had significantly better scores in block design and reading than the euthyroid subjects even after adjustment for a number of variables including sex, age, and family income level. Conclusion: Subclinical hypothyroidism was associated with better performance in some areas of cognitive functions while subclinical hyperthyroidism could be a potential risk factor
Misuse and Artifact in Factor Analytic Research
The theory of factor analysis has been developed for incorporating mathematical statistical theories such as the maximum likelihood method and asymptotic methods. However, there have been several instances of misuse while employing procedures for factor analysis studies. In several studies, factor analysis has been performed by deleting items exhibiting the ceiling effect or floor effect. The number of samples required for factor analysis is not well known. Kaiser-Guttman criterion cannot be applied for determining the number of factors. Furthermore, various studies have employed Scree Graphs and Parallel Analysis for the said purpose, but no definitive method exists for the same. Orthogonal rotation methods such as Varimax cannot be considered as a conclusive solution. However, Geomin has been considered as a better rotation method not only for simple structure but also for more complex factor configuration. Simple structure and bifactor structure are discussed in connection to factor rotation problem. Although there are various artifacts associated with the usage of factor analysis, this issue can be addressed by verifying factorial invariance through multi-group simultaneous analysis incorporated by SEM programs such as Mplus and R Package.因子分析の理論は、最尤法と漸近的方法のような数理統計学的理論を組み込んだ形で発展してきた。しかしながら、因子分析研究の手順にはまだ誤用がみられる。いくつかの研究において、天井効果や床効果を示す項目を削除して因子分析が行われている。因子分析に必要なサンプル数は明確ではない。因子の数を決定するためにKaiser-Guttman 基準は使うことはできない。そして、この目的でScree Graph とParallel Analysis を使用している研究は数多くあるが、そのための決定的な方法はない。Varimax のような直交回転は最終的な解と考えることはできない。しかしながら、Geomin は単純構造だけでなくより複雑な因子の布置に対しても優れた回転方法と考えられている。因子回転問題を考慮した単純構造とbifactor 構造について議論した。因子分析の使い方には多くのartifacts があるが、この問題は、Mplus やR Package などのSEMプログラムによって組み込まれた複数集団の同時分析によって因子的不変性を検証することによって対処することができる
Local Density Approximation for proton-neutron pairing correlations. I. Formalism
In the present study we generalize the self-consistent
Hartree-Fock-Bogoliubov (HFB) theory formulated in the coordinate space to the
case which incorporates an arbitrary mixing between protons and neutrons in the
particle-hole (p-h) and particle-particle (p-p or pairing) channels. We define
the HFB density matrices, discuss their spin-isospin structure, and construct
the most general energy density functional that is quadratic in local
densities. The consequences of the local gauge invariance are discussed and the
particular case of the Skyrme energy density functional is studied. By varying
the total energy with respect to the density matrices the self-consistent
one-body HFB Hamiltonian is obtained and the structure of the resulting mean
fields is shown. The consequences of the time-reversal symmetry, charge
invariance, and proton-neutron symmetry are summarized. The complete list of
expressions required to calculate total energy is presented.Comment: 22 RevTeX page
Engaging with a Prevention Approach: System Supports Needed in Child Abuse and Neglect Prevention
Public policy has been shifting from child abuse and neglect (CAN) intervention toward prevention, using public health style frameworks, which emphasize shared community and legislative responsibilities to support families (Browne, 2014; CDC, 2014). Analysis of qualitative data from statewide focus groups held in 2019 in Alabama with 99 community-based CAN prevention workers shows strengths in community collaboration, but also, struggles to help families meet basic needs because of lack of community resources, such as transportation and quality child care, and other barriers, including stigma. The results demonstrate confusion between prevention, which is intended to build family resilience to avert crisis, and intervention, meant to reunite families after child protection services involvement. We recommend researchers consistently link CAN research to prevention frameworks so as to build meaningful understanding how to create better prevention programs. Future practitioners should understand prevention, and be prepared to document their work so as to demonstrate need
Mu and Tau Neutrino Thermalization and Production in Supernovae: Processes and Timescales
We investigate the rates of production and thermalization of and
neutrinos at temperatures and densities relevant to core-collapse
supernovae and protoneutron stars. Included are contributions from electron
scattering, electron-positron annihilation, nucleon-nucleon bremsstrahlung, and
nucleon scattering. For the scattering processes, in order to incorporate the
full scattering kinematics at arbitrary degeneracy, the structure function
formalism developed by Reddy et al. (1998) and Burrows and Sawyer (1998) is
employed. Furthermore, we derive formulae for the total and differential rates
of nucleon-nucleon bremsstrahlung for arbitrary nucleon degeneracy in
asymmetric matter. We find that electron scattering dominates nucleon
scattering as a thermalization process at low neutrino energies
( MeV), but that nucleon scattering is always faster
than or comparable to electron scattering above MeV. In
addition, for g cm, MeV, and
neutrino energies MeV, nucleon-nucleon bremsstrahlung always
dominates electron-positron annihilation as a production mechanism for
and neutrinos.Comment: 29 pages, LaTeX (RevTeX), 13 figures, submitted to Phys. Rev. C. Also
to be found at anonymous ftp site http://www.astrophysics.arizona.edu; cd to
pub/thompso
A New Algorithm for Supernova Neutrino Transport and Some Applications
We have developed an implicit, multi-group, time-dependent, spherical
neutrino transport code based on the Feautrier variables, the tangent-ray
method, and accelerated iteration. The code achieves high
angular resolution, is good to O(), is equivalent to a Boltzmann solver
(without gravitational redshifts), and solves the transport equation at all
optical depths with precision. In this paper, we present our formulation of the
relevant numerics and microphysics and explore protoneutron star atmospheres
for snapshot post-bounce models. Our major focus is on spectra, neutrino-matter
heating rates, Eddington factors, angular distributions, and phase-space
occupancies. In addition, we investigate the influence on neutrino spectra and
heating of final-state electron blocking, stimulated absorption, velocity terms
in the transport equation, neutrino-nucleon scattering asymmetry, and weak
magnetism and recoil effects. Furthermore, we compare the emergent spectra and
heating rates obtained using full transport with those obtained using
representative flux-limited transport formulations to gauge their accuracy and
viability. Finally, we derive useful formulae for the neutrino source strength
due to nucleon-nucleon bremsstrahlung and determine bremsstrahlung's influence
on the emergent and neutrino spectra.Comment: 58 pages, single-spaced LaTeX, 23 figures, revised title, also
available at http://jupiter.as.arizona.edu/~burrows/papers, accepted for
publication in the Ap.
- …