65 research outputs found

    Using small molecules to facilitate exchange of bicarbonate and chloride anions across liposomal membranes

    No full text
    Bicarbonate is involved in a wide range of biological processes, which include respiration, regulation of intracellular pH and fertilization. In this study we use a combination of NMR spectroscopy and ion-selective electrode techniques to show that the natural product prodigiosin, a tripyrrolic molecule produced by microorganisms such as Streptomyces and Serratia, facilitates chloride/bicarbonate exchange (antiport) across liposomal membranes. Higher concentrations of simple synthetic molecules based on a 4,6-dihydroxyisophthalamide core are also shown to facilitate this antiport process. Although it is well known that proteins regulate Cl-/HCO3- exchange in cells, these results suggest that small molecules may also be able to regulate the concentration of these anions in biological systems

    High doses of medroxyprogesterone as the cause of disappearance of adherence of the zona pellucida to an oocyte

    Get PDF
    The zona pellucida (ZP) is an external glycoprotein membrane of oocytes of mammals and embryos in the early stage of their development. ZP first appears in growing ovarian follicles as an extracellular substance between the oocyte and granular cells. The zona pellucid markedly affects the development and maturation of the oocyte. The morphology of the ZP-oocyte complex allows a more precise determination of the oocyte maturity. According to numerous experimental studies, ZP is essential for preimplantation embryonic development of humans and other mammals. It prevents dispersion of blastomeres and enhances their mutual interactions. ZP is a dynamic structure responsible for the provision of nutrients to early forms of oocytes in mammals. The aim of the present study was untrastructural evaluation of the ZP-oocyte contact during inhibited ovulation. Female white rats (Wistar strain) received a suspension of medroxyprogesterone acetate (MPA) in incremental intramuscular bolus doses of 3.7 mg (therapeutic dose), 7.4 mg and 11.1 mg. The animals were decapitated 5 days after the administration of MPA. Ovarian sections were evaluated under a transmission electron microscope (TEM) Zeiss EM 900. Morphometric analysis of ZP was conducted using the cell imaging system by Olympus. In females exposed to therapeutic doses of MPA, ZP showed the structure of granular-fibrous reticulum of a medium electron density with single cytoplasmic processes originating from the surrounding structures. The oocyte cell membrane generated single, delicate processes directed toward ZP. Microvilli of the oocyte were short and thin. In the group receiving 7.4 mg of MPA, ZP had the structure of a delicate, loose granular-fibrous reticulum, and the oocyte cell membrane generated single microvilli directed toward ZP. In both those groups, the close ZP-oocyte contact was observed. Otherwise, in the group exposed to the highest MPA doses (11.1 mg), thicker and more numerous oocyte microvilli were found, which did not penetrate ZP matrix. They were dense, irregularly separated contour, forming a barrier between ZP and oocyte. The present findings are likely to suggest that MPA has inhibiting effects on the synthesis of binding proteins and causes the loss of the oocyte contact with ZP

    Involvement of Complexin 2 in Docking, Locking and Unlocking of Different SNARE Complexes during Sperm Capacitation and Induced Acrosomal Exocytosis

    Get PDF
    Acrosomal exocytosis (AE) is an intracellular multipoint fusion reaction of the sperm plasma membrane (PM) with the outer acrosomal membrane (OAM). This unique exocytotic event enables the penetration of the sperm through the zona pellucida of the oocyte. We previously observed a stable docking of OAM to the PM brought about by the formation of the trans-SNARE complex (syntaxin 1B, SNAP 23 and VAMP 3). By using electron microscopy, immunochemistry and immunofluorescence techniques in combination with functional studies and proteomic approaches, we here demonstrate that calcium ionophore-induced AE results in the formation of unilamellar hybrid membrane vesicles containing a mixture of components originating from the two fused membranes. These mixed vesicles (MV) do not contain the earlier reported trimeric SNARE complex but instead possess a novel trimeric SNARE complex that contained syntaxin 3, SNAP 23 and VAMP 2, with an additional SNARE interacting protein, complexin 2. Our data indicate that the earlier reported raft and capacitation-dependent docking phenomenon between the PM and OAM allows a specific rearrangement of molecules between the two docked membranes and is involved in (1) recruiting SNAREs and complexin 2 in the newly formed lipid-ordered microdomains, (2) the assembly of a fusion-driving SNARE complex which executes Ca2+-dependent AE, (3) the disassembly of the earlier reported docking SNARE complex, (4) the recruitment of secondary zona binding proteins at the zona interacting sperm surface. The possibility to study separate and dynamic interactions between SNARE proteins, complexin and Ca2+ which are all involved in AE make sperm an ideal model for studying exocytosis

    Complex life forms may arise from electrical processes

    Get PDF
    There is still not an appealing and testable model to explain how single-celled organisms, usually following fusion of male and female gametes, proceed to grow and evolve into multi-cellular, complexly differentiated systems, a particular species following virtually an invariant and unique growth pattern. An intrinsic electrical oscillator, resembling the cardiac pacemaker, may explain the process. Highly auto-correlated, it could live independently of ordinary thermodynamic processes which mandate increasing disorder, and could coordinate growth and differentiation of organ anlage

    Evolutionary patterns of two major reproduction candidate genes (Zp2 and Zp3) reveal no contribution to reproductive isolation between bovine species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has been established that mammalian egg zona pellucida (ZP) glycoproteins are responsible for species-restricted binding of sperm to unfertilized eggs, inducing the sperm acrosome reaction, and preventing polyspermy. In mammals, ZP apparently represents a barrier to heterospecific fertilization and thus probably contributes to reproductive isolation between species. The evolutionary relationships between some members of the tribe Bovini are complex and highly debatable, particularly, those involving <it>Bos </it>and <it>Bison </it>species for which interspecific hybridization is extensively documented. Because reproductive isolation is known to be a major precursor of species divergence, testing evolutionary patterns of ZP glycoproteins may shed some light into the speciation process of these species. To this end, we have examined intraspecific and interspecific genetic variation of two ZP genes (<it>Zp2 </it>and <it>Zp3</it>) for seven representative species (111 individuals) from the Bovini tribe, including five species from <it>Bos </it>and <it>Bison</it>, and two species each from genera <it>Bubalus </it>and <it>Syncerus</it>.</p> <p>Results</p> <p>A pattern of low levels of intraspecific polymorphism and interspecific divergence was detected for the two sequenced fragments each for <it>Zp2 </it>and <it>Zp3</it>. At intraspecific level, none of neutrality tests detected deviations from neutral equilibrium expectations for the two genes. Several haplotypes in both genes were shared by multiple species from <it>Bos </it>and <it>Bison</it>.</p> <p>Conclusions</p> <p>Here we argue that neither ancestral polymorphism nor introgressive hybridization alone can fully account for haplotype sharing among species from <it>Bos </it>and <it>Bison</it>, and that both scenarios have contributed to such a pattern of haplotype sharing observed here. Additionally, codon-based tests revealed strong evidence for purifying selection in the <it>Zp3 </it>coding haplotype sequences and weak evidence for purifying selection in the <it>Zp2 </it>coding haplotype sequences. Contrary to a general genetic pattern that genes or genomic regions contributing to reproductive isolation between species often evolve rapidly and show little or no gene flow between species, these results demonstrate that, particularly, those sequenced exons of the <it>Zp2 </it>and the <it>Zp3 </it>did not show any contribution to reproductive isolation between the bovine species studied here.</p

    Human male gamete endocrinology: 1alpha, 25-dihydroxyvitamin D3 (1,25(OH)2D3) regulates different aspects of human sperm biology and metabolism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A wider biological role of 1alpha,25-Dihydroxyvitamin D3 (1,25(OH)2D3), the active metabolite of vitamin D3, in tissues not primarily related to mineral metabolism was suggested. Recently, we evidenced the ultrastructural localization the 1,25(OH)2D3 receptor in the human sperm. However, the 1,25(OH)2D3 action in human male reproduction has not yet been clarified.</p> <p>Methods and Results</p> <p>By RT-PCR, Western blot and Immunofluorescence techniques, we demonstrated that human sperm expresses the 1,25(OH)2D3 receptor (VDR). Besides, 25(OH)D3-1 alpha-hydroxylase, evidenced by Western blot analysis, indicated that in sperm 1,25(OH)2D3 is locally produced, highlighting the potential for autocrine-paracrine responses. 1,25(OH)2D3 through VDR, increased intracellular Ca2+ levels, motility and acrosin activity revealing an unexpected significance of this hormone in the acquisition of fertilizing ability. In sperm, 1,25(OH)2D3 through VDR, reduces triglycerides content concomitantly to the increase of lipase activity. Rapid responses stimulated by 1,25(OH)2D3 have been observed on Akt, MAPK and GSK3 implying that this secosteroid is involved in different sperm signalling pathways.</p> <p>Conclusion</p> <p>Our data extended the role of 1,25(OH)2D3 beyond its conventional physiological actions, paving the way for novel therapeutic opportunities in the treatment of the male reproduction disorders.</p

    Identification of calcium-binding proteins associated with the human sperm plasma membrane

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The precise composition of the human sperm plasma membrane, the molecular interactions that define domain specific functions, and the regulation of membrane associated proteins during the capacitation process, still remain to be fully understood. Here, we investigated the repertoire of calcium-regulated proteins associated with the human sperm plasma membrane.</p> <p>Methods</p> <p>Surface specific radioiodination was combined with two-dimensional gel electrophoresis, a 45Ca-overlay assay, computer assisted image analysis and mass spectrometry to identify calcium-binding proteins exposed on the human sperm surface.</p> <p>Results</p> <p>Nine acidic 45Ca-binding sperm proteins were excised from stained preparative 2D gels and identified by mass spectrometry. Five of the calcium binding proteins; HSPA2 (HSP70-1), HSPA5 (Bip), HYOU1 (ORP150), serum amyloid P-component (SAP) and protein kinase C substrate 80K-H (80K-H) were found to be accessible to Iodo-Bead catalyzed 125I-labelling on the surface of intact human sperm. Agglutination and immunofluorescence analysis confirmed that SAP is situated on the plasma membrane of intact, motile sperm as well as permeabilized cells. Western blot analysis showed increased phosphorylation of human sperm 80K-H protein following in vitro capacitation. This is the first demonstration of the 80K-H protein in a mammalian sperm.</p> <p>Conclusion</p> <p>The presence of SAP on the surface of mature sperm implies that SAP has a physiological role in reproduction, which is thought to be in the removal of spermatozoa from the female genital tract via phagocytosis. Since 80K-H is a Ca2+-sensor recently implicated in the regulation of both inositol 1,4,5-trisphosphate receptor and transient receptor potential (TRP) cation channel activities, its detection in sperm represents the first direct signaling link between PKC and store-operated calcium channels identified in human sperm.</p

    Sperm Competition, Sperm Numbers and Sperm Quality in Muroid Rodents

    Get PDF
    Sperm competition favors increases in relative testes mass and production efficiency, and changes in sperm phenotype that result in faster swimming speeds. However, little is known about its effects on traits that contribute to determine the quality of a whole ejaculate (i.e., proportion of motile, viable, morphologically normal and acrosome intact sperm) and that are key determinants of fertilization success. Two competing hypotheses lead to alternative predictions: (a) sperm quantity and quality traits co-evolve under sperm competition because they play complementary roles in determining ejaculate's competitive ability, or (b) energetic constraints force trade-offs between traits depending on their relevance in providing a competitive advantage. We examined relationships between sperm competition levels, sperm quantity, and traits that determine ejaculate quality, in a comparative study of 18 rodent species using phylogenetically controlled analyses. Total sperm numbers were positively correlated to proportions of normal sperm, acrosome integrity and motile sperm; the latter three were also significantly related among themselves, suggesting no trade-offs between traits. In addition, testes mass corrected for body mass (i.e., relative testes mass), showed a strong association with sperm numbers, and positive significant associations with all sperm traits that determine ejaculate quality with the exception of live sperm. An “overall sperm quality” parameter obtained by principal component analysis (which explained 85% of the variance) was more strongly associated with relative testes mass than any individual quality trait. Overall sperm quality was as strongly associated with relative testes mass as sperm numbers. Thus, sperm quality traits improve under sperm competition in an integrated manner suggesting that a combination of all traits is what makes ejaculates more competitive. In evolutionary terms this implies that a complex network of genetic and developmental pathways underlying processes of sperm formation, maturation, transport in the female reproductive tract, and preparation for fertilization must all evolve in concert

    Expression of Tas1 Taste Receptors in Mammalian Spermatozoa: Functional Role of Tas1r1 in Regulating Basal Ca2+ and cAMP Concentrations in Spermatozoa

    Get PDF
    Background: During their transit through the female genital tract, sperm have to recognize and discriminate numerous chemical compounds. However, our current knowledge of the molecular identity of appropriate chemosensory receptor proteins in sperm is still rudimentary. Considering that members of the Tas1r family of taste receptors are able to discriminate between a broad diversity of hydrophilic chemosensory substances, the expression of taste receptors in mammalian spermatozoa was examined. Methodology/Principal Findings: The present manuscript documents that Tas1r1 and Tas1r3, which form the functional receptor for monosodium glutamate (umami) in taste buds on the tongue, are expressed in murine and human spermatozoa, where their localization is restricted to distinct segments of the flagellum and the acrosomal cap of the sperm head. Employing a Tas1r1-deficient mCherry reporter mouse strain, we found that Tas1r1 gene deletion resulted in spermatogenic abnormalities. In addition, a significant increase in spontaneous acrosomal reaction was observed in Tas1r1 null mutant sperm whereas acrosomal secretion triggered by isolated zona pellucida or the Ca2+ ionophore A23187 was not different from wild-type spermatozoa. Remarkably, cytosolic Ca2+ levels in freshly isolated Tas1r1-deficient sperm were significantly higher compared to wild-type cells. Moreover, a significantly higher basal cAMP concentration was detected in freshly isolated Tas1r1-deficient epididymal spermatozoa, whereas upon inhibition of phosphodiesterase or sperm capacitation, the amount of cAMP was not different between both genotypes. Conclusions/Significance: Since Ca2+ and cAMP control fundamental processes during the sequential process of fertilization, we propose that the identified taste receptors and coupled signaling cascades keep sperm in a chronically quiescent state until they arrive in the vicinity of the egg - either by constitutive receptor activity and/or by tonic receptor activation by gradients of diverse chemical compounds in different compartments of the female reproductive tract
    corecore