9 research outputs found
Stoichiometry of carbon, nitrogen, and phosphorus in wastewater from Romania
Water resources crisis can lead to a new concept of wastewater treatment. Wastewater cannot be considered waste, but can be a renewable or non-renewable energy source. Nutrients from wastewater could be recycled and not disposed of. A circular economy can be created that can be based on the ability of algae to absorb and store nutrients: carbon (C), nitrogen (N) and phosphorus (P). This study investigates the stoichiometry between carbon, nitrogen and phosphorus in wastewater from three geographical regions of Romania. The concentrations of inorganic nitrogen, total nitrogen, total phosphorus and total organic carbon were compared and evaluated. Three wastewater sampling points located in different areas were monitored, in the period 2013-2017 for the sampling point located in the central-northern part of the Romanian Plain and in the period 2015-2017 for the other two studied areas. The obtained results showed very high values of total nitrogen concentrations with values between 28.2 mg/L and 107.2 mg/L for the southeastern part of Romania. The values of the stoichiometric ratio’s C/N, C/P, N/P have varied over time with maximums in the autumn and winter seasons which indicates the existence of significant contamination of wastewater. It may be possible in the future to improve the performance of wastewater treatment by adjusting C, N and P parameters
Assessment of environmental pollution level caused by shipbuilding industry
The purpose of the paper was to create databases that would allow a proper assessment of the degree of marine pollution generated by shipyard industrial sector. The study was conducted over a period of three years, between 2015 and 2017. The parameters determined for the waters collected from the shipyard were within the maximum allowed limits according to the norms in force. However, values very close to the maximum allowable limit were observed in the case of groundwater for nickel, determined from the drilling located near the fuel depot in 2015 and chlorides determined from the drilling located near the galvanizing workshop, both in 2016 and in 2017. The analyzed parameters for the soil samples, collected from various sampling points and different depths, were below the value of the alert thresholds for less sensitive soils, according to Order 756/97. The databases created for this study can contribute as an incipient basis for the development of larger studies that include other industrial sectors as well as a longer evaluation period
Occurrence and Transport of Isothiazolinone-Type Biocides from Commercial Products to Aquatic Environment and Environmental Risk Assessment
This study investigated the occurrence and transport of four isothiazolinone-type biocides from commercial products to wastewater treatment plants (influents, sludges, and effluents) and to natural emissaries (upstream and downstream the wastewater treatment plants) in Romania. All four biocides were determined in personal care and household products, with the highest concentration of 76.4 µg/L OIT (2-octyl-4-isothiazolin-3-one). For environmental samples, three of the four isothiazolinones were determined, CMI (5-chloro-2-methyl-4-isothiazolin-3-one) being the prominent compound for water samples. The maximum concentration of 84.0 µg/L in influent, 122 µg/L upstream, and 144 µg/L downstream the wastewater treatment plants were obtained for CMI. Unlike water samples, in the sewage sludge samples, OIT proved to be the dominant compound, with concentration up to 5.80 µg/g d.w. The extremely high levels of isothiazolinone determined in different WWTPs from Romania may be due to the COVID-19 pandemic situation, during which a much larger amount of cleaning, hygiene, and personal care products was used. The isothiazolinone-type biocides were readily removed from the influents of the five WWTPs, with the mean removal rate up to 67.5%. The mean mass loading value for the targeted biocides based on influent was 20.4 μg/day/1000 people, while the average environmental emissions were 6.93 μg/day/1000 people for effluents. The results obtained for riverine water combine with statistical analysis showed that the anthropogenic activities are the major contamination sources of the surface waters. Preliminary ecological risk evaluation showed that BIT (1,2-benzisothiazol-3(2H)-one), OIT, and CMI could pose a very high risks to different aquatic species living in the receiving aquatic environments
Treatment of Wastewater Containing Nonsteroidal Anti-Inflammatory Drugs Using Activated Carbon Material
This study presents an adsorbent material (activated carbon) used in the treatment of wastewater with the role of removing ibuprofen, acetaminophen, diclofenac and ketoprofen pollutants. The wastewater treatment efficiencies of the activated carbon were systematically investigated using adsorption kinetics. The parameters studied were: pH (4 and 6 values of pH), initial concentration of wastewater (1, 5, and 10 mg/L), contact time (10 min), adsorbent quantity (0.1, 0.5, and 1 g), and isotherm models (Langmuir and Freundlich). The highest wastewater treatment efficiency was obtained at the 6 pH value. The determination of four anti-inflammatory drugs, frequently monitored in wastewater, was performed by a simple and fast method using the HPLC-technique-type DAD (diode array detector). The method was linear when the concentration ranged between 0.5 and 20 m/L for all compounds. The equilibrium concentration was obtained after 8 min. The octanol/water coefficient influenced the removal efficiency of the four drugs by the adsorbent material (activated carbon). The dose of activated carbon (0.1 to 1 g) significantly influenced the efficiency of wastewater treatment, which increased considerably when the dose of the adsorbent material increased. Using 1 g of the adsorbent material for the treatment of wastewater containing 1 mg/L initial concentration of pollutant compounds, the efficiencies were 98% for acetaminophen, 92% for diclofenac, 88% for ketoprofen and 96% for ibuprofen
Presence and Distribution of Sun-Blocking Agents in the Danube River: Implications for Aquatic Ecosystem Health
Organic sun-blocking agents are recognized as emerging pollutants of the aquatic environment. The consequences and effects of these harmful substances on aquatic organisms are not fully understood, particularly in the context of Romania. This study examines the presence and environmental hazards posed by ten UV filters found in the Danube River. Six of the ten targeted contaminants were detected in surface water samples: 2-hydroxy-4-methoxy-benzophenone (BP-3), 2,4-dihydroxy benzophenone (BP-1), 2,3,4-trihydroxy benzophenone (234HBP), 2,2′-dihydroxy-4-methoxy-benzophenone (BP-8), 2-hydroxy-4-methoxy-4′-methyl-benzophenone (BP-10), and benzyl salicylate (BS). In sediment samples, seven of the ten compounds were identified: BS, BP-3, 4-hydroxybenzophenone (4HBP), BP-1, 234HBP, 2,2′,4,4′-tetrahydroxybenzophenone (BP-2), and BP-10, with different frequencies. The correlation coefficients showed strong relationships between benzophenone derivatives in surface water samples and a common contamination source for BP-3 and BS in sediment samples. In the assessment, the risk quotient (RQ) for BP-1 in fish was determined to be 1.81. Similarly, RQ values for BP-3 were calculated as 1.24 for Daphnia magna and 57 for fish, suggesting that these UV filters could potentially present substantial hazards to the aquatic ecosystem. The study findings indicate that additional research is needed to investigate the presence and potential risks of organic sun-blocking agents in surface waters, with a particular emphasis on densely populated areas in Romania
Simultaneous Determination of 17 Phenolic Compounds in Surface Water and Wastewater Matrices Using an HPLC-DAD Method
A high-performance liquid chromatography with diode array detector (HPLC-DAD) analytical method was developed for the simultaneous detection of 17 phenolic compounds, including phenols, chlorophenols, alkylphenols, and nitrophenols, in two types of water matrices: wastewater and surface water. Prior to HPLC-DAD determination, a solid-phase extraction (SPE) procedure was optimized. The proposed method uses multiwavelength analysis, with the optimum detection wavelengths selected as 268 nm, 280 nm, 386 nm, 304 nm, and 316 nm. The highest resolution was achieved using a chromatographic column, Eclipse XDB-C18 (150 × 4.6 mm, 5 μm), which was kept at 20 °C. The mobile phase consisted of a gradient elution program, with mobile phase A being a 0.1% H3PO4 aqueous solution and mobile phase B being acetonitrile. The flow rate was set at 0.6 mL/min. The 17 target phenolic compounds were fully separated in less than 27 min. All compounds showed good linear regression, with correlation coefficients higher than 0.999. The method’s quantitation limits ranged from 4.38 to 89.7 ng/L for surface water and 7.83 to 167 ng/L for wastewater. The recovery rates were in the range of 86.2–95.1% for surface water and 79.1–86.3% for wastewater. The SPE-HPLC-DAD method was proven to be fast, sensitive, accurate, and reproducible. The developed method was successfully applied for the analysis of the 17 phenolic compounds in real surface water and wastewater samples, with phenol, 2,4-DNP, and 2,4-DNP being determined at levels greater than the method’s limits of quantitation (LOQs). The proposed analytical method represents an original technical resource for the simultaneous determination of 17 phenolic compounds in environmental water matrices
Groundwater Quality Affected by the Pyrite Ash Waste and Fertilizers in Valea Calugareasca, Romania
The aim of the study was to assess the groundwater quality in a rural area affected by the abandoned pyrite ash waste dumps. The abundance of major ions in groundwater depends largely on the nature of the rocks, climatic conditions, and mobility. To evaluate geochemical processes, 30 groundwater samples collected from Valea Calugareasca, Prahova County, Romania, were analyzed for the major anions (NO3−, SO42−, Cl−, HCO3−, and F−) and cations (Ca2+, Mg2+, Na+, and K+), which are naturally highly variable due to climatic and geographical location conditions. Ca2+, Na+, Mg2+, and K+ varied between 118 and 275 mg/L, 32 and 160 mg/L, 12.2 and 78.4 mg/L, and 0.21 and 4.48 mg/L, respectively. NO3− levels exceeding the World Health Organization (WHO) limit of 50 mg/L were identified in 17% of the groundwater samples, mainly as result of fertilizers applied to agricultural activities. The hydrogeochemical study identified dolomite dissolution and halite precipitation as natural sources of ions as well as the presence of pyrite as a source of SO42− ions in 60% of the samples. The sulfate content varied between 125 and 262 mg/L. Bicarbonate and chloride concentrations varied between 202 and 530 mg/L and 21 and 212 mg/L. The saturation index indicates the contribution of Ca2+ ions in the groundwater samples came from some processes of dissolving rocks such as aragonites (values between 1.27 and 2.69) and calcites (values between 1.43 and 2.82). Negative halite values indicated that salt accumulation results from precipitation processes. Only 10% of the analyzed groundwater samples were suitable for human consumption, the samples being situated on the hill, far away from the pyrite ash waste dumps and agricultural land
Bacterial Biodegradation of Perfluorooctanoic Acid (PFOA) and Perfluorosulfonic Acid (PFOS) Using Pure <i>Pseudomonas</i> Strains
The principal objective of the present research involved the achievement of high biodegradation degrees of perfluorooctanoic acid (PFOA) and perfluorosulfonic acid (PFOS) using pure individual bacterial strains. The use of such microorganisms can contribute to the improvement of the wastewater treatment process in sewage treatment plants through bioaugmentation or other bioremediation processes. Thus, in this study, we investigated the biodegradation potential of PFOA and PFOS. Bacterial strains tested in this study were from the Pseudomonas genus, namely: Pseudomonas aeruginosa and Pseudomonas putida, due to their known capacity to degrade xenobiotic compounds. The results indicated that Pseudomonas aeruginosa was able to transform 27.9% of PFOA and 47.3% of PFOS in 96 h, while Pseudomonas putida managed to transform 19.0% of PFOA and 46.9% of PFOS in the same time frame. During the biodegradation tests, PFHxA was recognized as the principal biotransformation product of PFOA in the presence of Pseudomonas aeruginosa, and PFPeA, PFPxA and PFHpA were recognized as the biotransformation products in the presence of Pseudomonas putida. For PFOS, only two biotransformation products (PHHxA and PFHpA) were observed as a consequence of biodegradation by both bacterial strains