232 research outputs found

    Dynamic Loop Scheduling Using MPI Passive-Target Remote Memory Access

    Get PDF
    Scientific applications often contain large computationally-intensive parallel loops. Loop scheduling techniques aim to achieve load balanced executions of such applications. For distributed-memory systems, existing dynamic loop scheduling (DLS) libraries are typically MPI-based, and employ a master-worker execution model to assign variably-sized chunks of loop iterations. The master-worker execution model may adversely impact performance due to the master-level contention. This work proposes a distributed chunk-calculation approach that does not require the master-worker execution scheme. Moreover, it considers the novel features in the latest MPI standards, such as passive-target remote memory access, shared-memory window creation, and atomic read-modify-write operations. To evaluate the proposed approach, five well-known DLS techniques, two applications, and two heterogeneous hardware setups have been considered. The DLS techniques implemented using the proposed approach outperformed their counterparts implemented using the traditional master-worker execution model

    Hierarchical Dynamic Loop Self-Scheduling on Distributed-Memory Systems Using an MPI+MPI Approach

    Full text link
    Computationally-intensive loops are the primary source of parallelism in scientific applications. Such loops are often irregular and a balanced execution of their loop iterations is critical for achieving high performance. However, several factors may lead to an imbalanced load execution, such as problem characteristics, algorithmic, and systemic variations. Dynamic loop self-scheduling (DLS) techniques are devised to mitigate these factors, and consequently, improve application performance. On distributed-memory systems, DLS techniques can be implemented using a hierarchical master-worker execution model and are, therefore, called hierarchical DLS techniques. These techniques self-schedule loop iterations at two levels of hardware parallelism: across and within compute nodes. Hybrid programming approaches that combine the message passing interface (MPI) with open multi-processing (OpenMP) dominate the implementation of hierarchical DLS techniques. The MPI-3 standard includes the feature of sharing memory regions among MPI processes. This feature introduced the MPI+MPI approach that simplifies the implementation of parallel scientific applications. The present work designs and implements hierarchical DLS techniques by exploiting the MPI+MPI approach. Four well-known DLS techniques are considered in the evaluation proposed herein. The results indicate certain performance advantages of the proposed approach compared to the hybrid MPI+OpenMP approach

    Assessing Data Usefulness for Failure Analysis in Anonymized System Logs

    Full text link
    System logs are a valuable source of information for the analysis and understanding of systems behavior for the purpose of improving their performance. Such logs contain various types of information, including sensitive information. Information deemed sensitive can either directly be extracted from system log entries by correlation of several log entries, or can be inferred from the combination of the (non-sensitive) information contained within system logs with other logs and/or additional datasets. The analysis of system logs containing sensitive information compromises data privacy. Therefore, various anonymization techniques, such as generalization and suppression have been employed, over the years, by data and computing centers to protect the privacy of their users, their data, and the system as a whole. Privacy-preserving data resulting from anonymization via generalization and suppression may lead to significantly decreased data usefulness, thus, hindering the intended analysis for understanding the system behavior. Maintaining a balance between data usefulness and privacy preservation, therefore, remains an open and important challenge. Irreversible encoding of system logs using collision-resistant hashing algorithms, such as SHAKE-128, is a novel approach previously introduced by the authors to mitigate data privacy concerns. The present work describes a study of the applicability of the encoding approach from earlier work on the system logs of a production high performance computing system. Moreover, a metric is introduced to assess the data usefulness of the anonymized system logs to detect and identify the failures encountered in the system.Comment: 11 pages, 3 figures, submitted to 17th IEEE International Symposium on Parallel and Distributed Computin

    rDLB: A Novel Approach for Robust Dynamic Load Balancing of Scientific Applications with Parallel Independent Tasks

    Full text link
    Scientific applications often contain large and computationally intensive parallel loops. Dynamic loop self scheduling (DLS) is used to achieve a balanced load execution of such applications on high performance computing (HPC) systems. Large HPC systems are vulnerable to processors or node failures and perturbations in the availability of resources. Most self-scheduling approaches do not consider fault-tolerant scheduling or depend on failure or perturbation detection and react by rescheduling failed tasks. In this work, a robust dynamic load balancing (rDLB) approach is proposed for the robust self scheduling of independent tasks. The proposed approach is proactive and does not depend on failure or perturbation detection. The theoretical analysis of the proposed approach shows that it is linearly scalable and its cost decrease quadratically by increasing the system size. rDLB is integrated into an MPI DLS library to evaluate its performance experimentally with two computationally intensive scientific applications. Results show that rDLB enables the tolerance of up to (P minus one) processor failures, where P is the number of processors executing an application. In the presence of perturbations, rDLB boosted the robustness of DLS techniques up to 30 times and decreased application execution time up to 7 times compared to their counterparts without rDLB

    Efficient Generation of Parallel Spin-images Using Dynamic Loop Scheduling

    Get PDF
    High performance computing (HPC) systems underwent a significant increase in their processing capabilities. Modern HPC systems combine large numbers of homogeneous and heterogeneous computing resources. Scalability is, therefore, an essential aspect of scientific applications to efficiently exploit the massive parallelism of modern HPC systems. This work introduces an efficient version of the parallel spin-image algorithm (PSIA), called EPSIA. The PSIA is a parallel version of the spin-image algorithm (SIA). The (P)SIA is used in various domains, such as 3D object recognition, categorization, and 3D face recognition. EPSIA refers to the extended version of the PSIA that integrates various well-known dynamic loop scheduling (DLS) techniques. The present work: (1) Proposes EPSIA, a novel flexible version of PSIA; (2) Showcases the benefits of applying DLS techniques for optimizing the performance of the PSIA; (3) Assesses the performance of the proposed EPSIA by conducting several scalability experiments. The performance results are promising and show that using well-known DLS techniques, the performance of the EPSIA outperforms the performance of the PSIA by a factor of 1.2 and 2 for homogeneous and heterogeneous computing resources, respectively

    Performance Reproduction and Prediction of Selected Dynamic Loop Scheduling Experiments

    Full text link
    Scientific applications are complex, large, and often exhibit irregular and stochastic behavior. The use of efficient loop scheduling techniques in computationally-intensive applications is crucial for improving their performance on high-performance computing (HPC) platforms. A number of dynamic loop scheduling (DLS) techniques have been proposed between the late 1980s and early 2000s, and efficiently used in scientific applications. In most cases, the computing systems on which they have been tested and validated are no longer available. This work is concerned with the minimization of the sources of uncertainty in the implementation of DLS techniques to avoid unnecessary influences on the performance of scientific applications. Therefore, it is important to ensure that the DLS techniques employed in scientific applications today adhere to their original design goals and specifications. The goal of this work is to attain and increase the trust in the implementation of DLS techniques in present studies. To achieve this goal, the performance of a selection of scheduling experiments from the 1992 original work that introduced factoring is reproduced and predicted via both, simulative and native experimentation. The experiments show that the simulation reproduces the performance achieved on the past computing platform and accurately predicts the performance achieved on the present computing platform. The performance reproduction and prediction confirm that the present implementation of the DLS techniques considered both, in simulation and natively, adheres to their original description. The results confirm the hypothesis that reproducing experiments of identical scheduling scenarios on past and modern hardware leads to an entirely different behavior from expected

    The Power of Localization for Efficiently Learning Linear Separators with Noise

    Full text link
    We introduce a new approach for designing computationally efficient learning algorithms that are tolerant to noise, and demonstrate its effectiveness by designing algorithms with improved noise tolerance guarantees for learning linear separators. We consider both the malicious noise model and the adversarial label noise model. For malicious noise, where the adversary can corrupt both the label and the features, we provide a polynomial-time algorithm for learning linear separators in ℜd\Re^d under isotropic log-concave distributions that can tolerate a nearly information-theoretically optimal noise rate of η=Ω(Ï”)\eta = \Omega(\epsilon). For the adversarial label noise model, where the distribution over the feature vectors is unchanged, and the overall probability of a noisy label is constrained to be at most η\eta, we also give a polynomial-time algorithm for learning linear separators in ℜd\Re^d under isotropic log-concave distributions that can handle a noise rate of η=Ω(Ï”)\eta = \Omega\left(\epsilon\right). We show that, in the active learning model, our algorithms achieve a label complexity whose dependence on the error parameter Ï”\epsilon is polylogarithmic. This provides the first polynomial-time active learning algorithm for learning linear separators in the presence of malicious noise or adversarial label noise.Comment: Contains improved label complexity analysis communicated to us by Steve Hannek

    THE MAIN RESULTS OF ARCHAEOLOGICAL RESEARCH AT REȘCA-ROMULA (1869-2019) AND CONSIDERATIONS ON THE GEOPHYSICAL APPROACH – PART II

    Get PDF
    Book Chapter in INSIGHTS OF GEOSCIENCES FOR NATURAL HAZARDS AND CULTURAL HERITAGE, Editor: Florina CHITE
    • 

    corecore