9 research outputs found

    Tikhonov adaptively regularized gamma variate fitting to assess plasma clearance of inert renal markers

    Get PDF
    The Tk-GV model fits Gamma Variates (GV) to data by Tikhonov regularization (Tk) with shrinkage constant, λ, chosen to minimize the relative error in plasma clearance, CL (ml/min). Using 169Yb-DTPA and 99mTc-DTPA (n = 46, 8–9 samples, 5–240 min) bolus-dilution curves, results were obtained for fit methods: (1) Ordinary Least Squares (OLS) one and two exponential term (E1 and E2), (2) OLS-GV and (3) Tk-GV. Four tests examined the fit results for: (1) physicality of ranges of model parameters, (2) effects on parameter values when different data subsets are fit, (3) characterization of residuals, and (4) extrapolative error and agreement with published correction factors. Test 1 showed physical Tk-GV results, where OLS-GV fits sometimes-produced nonphysical CL. Test 2 showed the Tk-GV model produced good results with 4 or more samples drawn between 10 and 240 min. Test 3 showed that E1 and E2 failed goodness-of-fit testing whereas GV fits for t > 20 min were acceptably good. Test 4 showed CLTk-GV clearance values agreed with published CL corrections with the general result that CLE1 > CLE2 > CLTk-GV and finally that CLTk-GV were considerably more robust, precise and accurate than CLE2, and should replace the use of CLE2 for these renal markers

    Renal Cystic Disease

    No full text

    Transplantation in Inherited, Systemic, and Metabolic Diseases

    No full text
    corecore