13 research outputs found

    Evaluation of MOSFETs with crystalline high-k gate-dielectrics: device simulation and experimental data, Journal of Telecommunications and Information Technology, 2007, nr 2

    Get PDF
    The evaluation of the world’s first MOSFETs with epitaxially-grown rare-earth high-k gate dielectrics is the main issue of this work. Electrical device characterization has been performed on MOSFETs with high-k gate oxides as well as their reference counterparts with silicon dioxide gate dielectric. In addition, by means of technology simulation with TSUPREM4, models of these devices are established. Current-voltage characteristics and parameter extraction on the simulated structures is conducted with the device simulator MEDICI. Measured and simulated device characteristics are presented and the impact of interface state and fixed charge densities is discussed. Device parameters of high-k devices fabricated with standard poly-silicon gate and replacement metal gate process are compared

    Endovascular Repair of a Type III Renal Artery Aneurysm using the Multilayer Flow Modulator: A Clinical Case Report

    Get PDF
    Abstract Background: Our aim was to describe our experience of the multilayer flow modulator (Cardiatis, Isnes, Belgium) used in the treatment of renal artery aneurysms

    The genetic study of three population microisolates in South Tyrol (MICROS): study design and epidemiological perspectives

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is increasing evidence of the important role that small, isolated populations could play in finding genes involved in the etiology of diseases. For historical and political reasons, South Tyrol, the northern most Italian region, includes several villages of small dimensions which remained isolated over the centuries.</p> <p>Methods</p> <p>The MICROS study is a population-based survey on three small, isolated villages, characterized by: old settlement; small number of founders; high endogamy rates; slow/null population expansion. During the stage-1 (2002/03) genealogical data, screening questionnaires, clinical measurements, blood and urine samples, and DNA were collected for 1175 adult volunteers. Stage-2, concerning trait diagnoses, linkage analysis and association studies, is ongoing. The selection of the traits is being driven by expert clinicians. Preliminary, descriptive statistics were obtained. Power simulations for finding linkage on a quantitative trait locus (QTL) were undertaken.</p> <p>Results</p> <p>Starting from participants, genealogies were reconstructed for 50,037 subjects, going back to the early 1600s. Within the last five generations, subjects were clustered in one pedigree of 7049 subjects plus 178 smaller pedigrees (3 to 85 subjects each). A significant probability of familial clustering was assessed for many traits, especially among the cardiovascular, neurological and respiratory traits. Simulations showed that the MICROS pedigree has a substantial power to detect a LOD score ≄ 3 when the QTL specific heritability is ≄ 20%.</p> <p>Conclusion</p> <p>The MICROS study is an extensive, ongoing, two-stage survey aimed at characterizing the genetic epidemiology of Mendelian and complex diseases. Our approach, involving different scientific disciplines, is an advantageous strategy to define and to study population isolates. The isolation of the Alpine populations, together with the extensive data collected so far, make the MICROS study a powerful resource for the study of diseases in many fields of medicine. Recent successes and simulation studies give us confidence that our pedigrees can be valuable both in finding new candidates loci and to confirm existing candidate genes.</p

    Evaluation of MOSFETs with Crystalline High-k Gate-dielectrics: Device Simulation and Experimental Data

    No full text
    The evaluation of the world's first MOSFETs with epitaxially-grown rare-earth high-k gate dielectrics is the main issue of this work. Electrical device characterization has been performed on MOSFETs with high-k gate oxides as well as their reference counterparts with silicon dioxide gate dielectric. In addition, by means of technology simulation with TSUPREM4, models of these devices are established. Current-voltage characteristics and parameter extraction on the simulated structures is conducted with the device simulator MEDICI. Measured and simulated device characteristics are presented and the impact of interface state and fixed charge densities is discussed. Device parameters of high-k devices fabricated with standard poly-silicon gate and replacement metal gate process are compared
    corecore