135 research outputs found
Some results on more flexible versions of Graph Motif
The problems studied in this paper originate from Graph Motif, a problem
introduced in 2006 in the context of biological networks. Informally speaking,
it consists in deciding if a multiset of colors occurs in a connected subgraph
of a vertex-colored graph. Due to the high rate of noise in the biological
data, more flexible definitions of the problem have been outlined. We present
in this paper two inapproximability results for two different optimization
variants of Graph Motif: one where the size of the solution is maximized, the
other when the number of substitutions of colors to obtain the motif from the
solution is minimized. We also study a decision version of Graph Motif where
the connectivity constraint is replaced by the well known notion of graph
modularity. While the problem remains NP-complete, it allows algorithms in FPT
for biologically relevant parameterizations
The Graph Motif problem parameterized by the structure of the input graph
The Graph Motif problem was introduced in 2006 in the context of biological
networks. It consists of deciding whether or not a multiset of colors occurs in
a connected subgraph of a vertex-colored graph. Graph Motif has been mostly
analyzed from the standpoint of parameterized complexity. The main parameters
which came into consideration were the size of the multiset and the number of
colors. Though, in the many applications of Graph Motif, the input graph
originates from real-life and has structure. Motivated by this prosaic
observation, we systematically study its complexity relatively to graph
structural parameters. For a wide range of parameters, we give new or improved
FPT algorithms, or show that the problem remains intractable. For the FPT
cases, we also give some kernelization lower bounds as well as some ETH-based
lower bounds on the worst case running time. Interestingly, we establish that
Graph Motif is W[1]-hard (while in W[P]) for parameter max leaf number, which
is, to the best of our knowledge, the first problem to behave this way.Comment: 24 pages, accepted in DAM, conference version in IPEC 201
Finding Disjoint Paths on Edge-Colored Graphs: More Tractability Results
The problem of finding the maximum number of vertex-disjoint uni-color paths
in an edge-colored graph (called MaxCDP) has been recently introduced in
literature, motivated by applications in social network analysis. In this paper
we investigate how the complexity of the problem depends on graph parameters
(namely the number of vertices to remove to make the graph a collection of
disjoint paths and the size of the vertex cover of the graph), which makes
sense since graphs in social networks are not random and have structure. The
problem was known to be hard to approximate in polynomial time and not
fixed-parameter tractable (FPT) for the natural parameter. Here, we show that
it is still hard to approximate, even in FPT-time. Finally, we introduce a new
variant of the problem, called MaxCDDP, whose goal is to find the maximum
number of vertex-disjoint and color-disjoint uni-color paths. We extend some of
the results of MaxCDP to this new variant, and we prove that unlike MaxCDP,
MaxCDDP is already hard on graphs at distance two from disjoint paths.Comment: Journal version in JOC
The Graph Motif Problem Parameterized by the Structure of the Input Graph
The Graph Motif problem was introduced in 2006 in the context of biological networks. It consists of deciding whether or not a multiset of colors occurs in a connected subgraph of a vertex-colored graph. Graph Motif has been analyzed from the standpoint of parameterized complexity. The main parameters which came into consideration were the size of the multiset and the number of colors. Though, in the many applications of Graph Motif, the input graph originates from real-life and has structure. Motivated by this prosaic observation, we systematically study its complexity relatively to graph structural parameters. For a wide range of parameters, we give new or improved FPT algorithms, or show that the problem remains intractable. Interestingly, we establish that Graph Motif is W[1]-hard (while in W[P]) for parameter max leaf number, which is, to the best of our knowledge, the first problem to behave this way
The PACE 2018 Parameterized Algorithms and Computational Experiments Challenge: The Third Iteration
The Program Committee of the Third Parameterized Algorithms and Computational Experiments challenge (PACE 2018) reports on the third iteration of the PACE challenge. This year, all three tracks were dedicated to solve the Steiner Tree problem, in which, given an edge-weighted graph and a subset of its vertices called terminals, one has to find a minimum-weight subgraph which spans all the terminals. In Track A, the number of terminals was limited. In Track B, a tree-decomposition of the graph was provided in the input, and the treewidth was limited. Finally, Track C welcomed heuristics. Over 80 participants on 40 teams from 16 countries submitted their implementations to the competition
Grundy Coloring & Friends, Half-Graphs, Bicliques
The first-fit coloring is a heuristic that assigns to each vertex, arriving in a specified order ?, the smallest available color. The problem Grundy Coloring asks how many colors are needed for the most adversarial vertex ordering ?, i.e., the maximum number of colors that the first-fit coloring requires over all possible vertex orderings. Since its inception by Grundy in 1939, Grundy Coloring has been examined for its structural and algorithmic aspects. A brute-force f(k)n^{2^{k-1}}-time algorithm for Grundy Coloring on general graphs is not difficult to obtain, where k is the number of colors required by the most adversarial vertex ordering. It was asked several times whether the dependency on k in the exponent of n can be avoided or reduced, and its answer seemed elusive until now. We prove that Grundy Coloring is W[1]-hard and the brute-force algorithm is essentially optimal under the Exponential Time Hypothesis, thus settling this question by the negative.
The key ingredient in our W[1]-hardness proof is to use so-called half-graphs as a building block to transmit a color from one vertex to another. Leveraging the half-graphs, we also prove that b-Chromatic Core is W[1]-hard, whose parameterized complexity was posed as an open question by Panolan et al. [JCSS \u2717]. A natural follow-up question is, how the parameterized complexity changes in the absence of (large) half-graphs. We establish fixed-parameter tractability on K_{t,t}-free graphs for b-Chromatic Core and Partial Grundy Coloring, making a step toward answering this question. The key combinatorial lemma underlying the tractability result might be of independent interest
Complexity of Grundy coloring and its variants
The Grundy number of a graph is the maximum number of colors used by the
greedy coloring algorithm over all vertex orderings. In this paper, we study
the computational complexity of GRUNDY COLORING, the problem of determining
whether a given graph has Grundy number at least . We also study the
variants WEAK GRUNDY COLORING (where the coloring is not necessarily proper)
and CONNECTED GRUNDY COLORING (where at each step of the greedy coloring
algorithm, the subgraph induced by the colored vertices must be connected).
We show that GRUNDY COLORING can be solved in time and WEAK
GRUNDY COLORING in time on graphs of order . While GRUNDY
COLORING and WEAK GRUNDY COLORING are known to be solvable in time
for graphs of treewidth (where is the number of
colors), we prove that under the Exponential Time Hypothesis (ETH), they cannot
be solved in time . We also describe an
algorithm for WEAK GRUNDY COLORING, which is therefore
\fpt for the parameter . Moreover, under the ETH, we prove that such a
running time is essentially optimal (this lower bound also holds for GRUNDY
COLORING). Although we do not know whether GRUNDY COLORING is in \fpt, we
show that this is the case for graphs belonging to a number of standard graph
classes including chordal graphs, claw-free graphs, and graphs excluding a
fixed minor. We also describe a quasi-polynomial time algorithm for GRUNDY
COLORING and WEAK GRUNDY COLORING on apex-minor graphs. In stark contrast with
the two other problems, we show that CONNECTED GRUNDY COLORING is
\np-complete already for colors.Comment: 24 pages, 7 figures. This version contains some new results and
improvements. A short paper based on version v2 appeared in COCOON'1
- …