31 research outputs found

    The low acute effectiveness of a high-power short duration radiofrequency current application technique in pulmonary vein isolation for atrial fibrillation

    Get PDF
    Background: Application of high power radiofrequency (RF) energy for a short duration (HPSD) to isolate pulmonary vein (PV) is an emerging technique. But power and duration settings are very different across different centers. Moreover, despite encouraging preclinical and clinical data, studies measuring acute effectiveness of various HPSD settings are limited.Methods: Twenty-five consecutive patients with symptomatic atrial fibrillation (AF) were treated with pulmonary vein isolation (PVI) using HPSD. PVI was performed with a contact force catheter (Thermocool SF Smart-Touch) and Carto 3 System. The following parameters were used: energy output 50 W, target temperature 43°C, irrigation 15 mL/min, targeted contact force of > 10 g. RF energy was applied for 6–10 s. Required minimal interlesion distance was 4 mm. Twenty minutes after each successful PVI adenosine provocation test (APT) was performed by administrating 18 mg adenosine to unmask dormant PV conduction.Results: All PVs (100 PVs) were successfully isolated. RF lesions needed per patient were 131 ± 41, the average duration for each RF application was 8.1 ± 1.7 s. Procedure time was 138 ± 21 min and average of total RF energy duration was 16.3 ± 5.2 min and average amount of RF energy was 48209 ± 12808 W. APT application time after PVI was 31.1 ± 8.3 min for the left sided PVs and 22.2 ± 4.6 min (p = 0.005) for the right sided PVs. APT was transiently positive in 18 PVs (18%) in 8 (32%) patients.Conclusions: Pulmonary vein isolation with high power for 6–10 s is feasible and shortens the procedure and ablation duration. However, acute effectiveness of the HPSD seems to be lower than expected. Further studies combining other ablation parameters are needed to improve this promising technique

    Time course of eosinophilic myocarditis visualized by CMR

    Get PDF
    We report the diagnostic potential of cardiovascular magnetic resonance (CMR) to visualize the time course of eosinophilic myocarditis upon successful treatment. A 50-year-old man was admitted with a progressive heart failure. Endomyocardial biopsies were taken from the left ventricle because of a white blood cell count of 17000/mm3 with 41% eosinophils. Histological evaluation revealed endomyocardial eosinophilic infiltration and areas of myocyte necrosis. The patient was diagnosed with hypereosinophilic myocarditis due to idiopathic hypereosinophilic syndrome. CMR-studies at presentation and a follow-up study 3 weeks later showed diffuse subendocardial LGE in the whole left ventricle. Upon treatment with steroids, CMR-studies revealed marked reduction of subendocardial LGE after 3 months in parallel with further clinical improvement. This case therefore highlights the clinical importance of CMR to visualize the extent of endomyocardial involvement in the diagnosis and treatment of eosinophilic myocarditis

    Left atrial strain parameters derived by echocardiography are impaired in patients with acute myocarditis and preserved systolic left ventricular function

    Get PDF
    Purpose: Data derived by cardiac magnetic resonance (CMR) feature tracking suggest that not only left ventricular but also left atrial function is impaired in patients with acute myocarditis. Therefore, we investigated the diagnostic value of speckle tracking echocardiography of the left ventricle and left atrium in patients with acute myocarditis and normal left ventricular ejection fraction (LVEF). Methods and results: 30 patients with acute myocarditis confirmed by CMR according to the Lake Louise criteria and 20 healthy controls were analyzed including global longitudinal strain (GLS) and left atrial (LA) strain parameters. Although preserved LVEF was present in both groups, GLS was significantly lower in patients with acute myocarditis (GLS − 19.1 ± 1.8% vs. GLS − 22.1 ± 1.7%, p < 0.001). Further diastolic dysfunction measured by E/e’ mean was significantly deteriorated in the myocarditis group compared to the control group (E/e’ mean 6.4 ± 1.6 vs. 5.5 ± 1.0, p = 0.038). LA reservoir function (47.6 ± 10.4% vs. 55.5 ± 10.8%, p = 0.013) and LA conduit function (-33.0 ± 9.6% vs. -39.4 ± 9.5%, p = 0.024) were significantly reduced in patients with acute myocarditis compared to healthy controls. Also left atrial stiffness index (0.15 ± 0.05 vs. 0.10 ± 0.03, p = 0.003) as well as left atrial filling index (1.67 ± 0.47 vs. 1.29 ± 0.34, p = 0.004) were deteriorated in patients with myocarditis compared to the control group. Conclusion: In patients with acute myocarditis and preserved LVEF not only GLS but also LA reservoir function, LA conduit function and left atrial stiffness index as well as left atrial filling index were impaired compared to healthy controls indicating ventricular diastolic dysfunction and elevated LV filling pressures

    Severe COVID-19 pneumonia: Perfusion analysis in correlation with pulmonary embolism and vessel enlargement using dual-energy CT data

    Get PDF
    Background Gas exchange in COVID-19 pneumonia is impaired and vessel obstruction has been suspected to cause ventilation-perfusion mismatch. Dual-energy CT (DECT) can depict pulmonary perfusion by regional assessment of iodine uptake. Objective The purpose of this study was the analysis of pulmonary perfusion using dual-energy CT in a cohort of 27 consecutive patients with severe COVID-19 pneumonia. Method We retrospectively analyzed pulmonary perfusion with DECT in 27 consecutive patients (mean age 57 years, range 21–73; 19 men and 8 women) with severe COVID-19 pneumonia. Iodine uptake (IU) in regions-of-interest placed into normally aerated lung, ground-glass opacifications (GGO) and consolidations was measured using a dedicated postprocessing software. Vessel enlargement (VE) within opacifications and presence of pulmonary embolism (PE) was assessed by subjective analysis. Linear mixed models were used for statistical analyses. Results Compared to normally aerated lung 106/151 (70.2%) opacifications without upstream PE demonstrated an increased IU, 9/151 (6.0%) an equal IU and 36/151 (23.8%) a decreased IU. The estimated mean iodine uptake (EMIU) in opacifications without upstream PE (GGO 1.77 mg/mL; 95%-CI: 1.52–2.02; p = 0.011, consolidations 1.82 mg/mL; 95%-CI: 1.56–2.08, p = 0.006) was significantly higher compared to normal lung (1.22 mg/mL; 95%-CI: 0.95–1.49). In case of upstream PE, EMIU of opacifications (combined GGO and consolidations) was significantly decreased compared to normal lung (0.52 mg/mL; 95%-CI: -0.07–1.12; p = 0.043). The presence of VE in opacifications correlated significantly with iodine uptake (p<0.001). Conclusions DECT revealed the opacifications in a subset of patients with severe COVID-19 pneumonia to be perfused non-uniformly with some being hypo- and others being hyperperfused. Mean iodine uptake in opacifications (both ground-glass and consolidation) was higher compared to normally aerated lung except for areas with upstream pulmonary embolism. Vessel enlargement correlated with iodine uptake: In summary, in a cohort of 27 consecutive patients with severe COVID-19 pneumonia, dual-energy CT demonstrated a wide range of iodine uptake in pulmonary ground-glass opacifications and consolidations as a surrogate marker for hypo- and hyperperfusion compared to normally aerated lung. Applying DECT to determine which pathophysiology is predominant might help to tailor therapy to the individual patient´s needs

    Association of Coronary Collaterals and Myocardial Salvage Measured by Serial Cardiac Magnetic Resonance Imaging after Acute Myocardial Infarction

    Get PDF
    Background: Coronary collateral flow in angiography has been linked with lower mortality rates in patients with coronary artery disease. However, the relevance of the underlying mechanism is sparse. Therefore, we tested the hypothesis that in patients with acute myocardial infarction (AMI), relevant coronary collateral flow is associated with more salvaged myocardium and lower risk of developing heart failure. Methods and Results: Patients with first AMI who received a percutaneous coronary intervention within 24 h after symptom onset were classified visually by assigning a Cohen–Rentrop Score (CRS) ranging between 0 (no collaterals) and 3 (complete retrograde filling of the occluded vessel). All 36 patients included in the analysis underwent cardiac magnetic resonance examination within 3 to 5 days after myocardial infarction and after 12 weeks. Patients with relevant collateral flow (CRS 2–3) to the infarct-related artery had significantly smaller final infarct size compared to those without (7 � 4% vs. 20 � 12%, p < 0.001). In addition, both groups showed improvement in left ventricular ejection fraction early after AMI, whereas the recovery was greater in CRS 2–3 (+8 � 5% vs. +3 � 5%, p = 0.015). Conclusion: In patients with first AMI, relevant collateral flow to the infarct-related artery was associated with more salvaged myocardium at 12 weeks, translating into greater improvement of systolic left ventricular function. The protective effect of coronary collaterals and the variance of infarct location should be further investigated in larger studies

    Central Sleep Apnea Is Associated with an Abnormal P-Wave Terminal Force in Lead V1 in Patients with Acute Myocardial Infarction Independent from Ventricular Function

    Get PDF
    Sleep-disordered breathing (SDB) is highly prevalent in patients with cardiovascular disease. We have recently shown that an elevation of the electrocardiographic (ECG) parameter P wave terminal force in lead V1 (PTFV1) is linked to atrial proarrhythmic activity by stimulation of reactive oxygen species (ROS)-dependent pathways. Since SDB leads to increased ROS generation, we aimed to investigate the relationship between SDB-related hypoxia and PTFV1 in patients with first-time acute myocardial infarction (AMI). We examined 56 patients with first-time AMI. PTFV1 was analyzed in 12-lead ECGs and defined as abnormal when ≥4000 µV*ms. Polysomnography (PSG) to assess SDB was performed within 3–5 days after AMI. SDB was defined by an apnea-hypopnea-index (AHI) >15/h. The multivariable regression analysis showed a significant association between SDB-related hypoxia and the magnitude of PTFV1 independent from other relevant clinical co-factors. Interestingly, this association was mainly driven by central but not obstructive apnea events. Additionally, abnormal PTFV1 was associated with SDB severity (as measured by AHI, B 21.495; CI [10.872 to 32.118]; p < 0.001), suggesting that ECG may help identify patients suitable for SDB screening. Hypoxia as a consequence of central sleep apnea may result in atrial electrical remodeling measured by abnormal PTFV1 in patients with first-time AMI independent of ventricular function. The PTFV1 may be used as a clinical marker for increased SDB risk in cardiovascular patients

    Bedside diagnosis of pleural effusion with a latest generation hand-carried ultrasound device in intensive care patients

    Get PDF
    Background: Further development established hand-carried ultrasound (HCU) imagers in daily clinical workflow providing several advantages such as fast bedside availability and prompt diagnosis. Purpose: To evaluate the diagnostic yield of a latest generation HCU imager compared to chest radiography (CR) for the detection of pleural effusion (PE) in intensive care patients. Material and Methods: Forty-eight hemithoraces of 24 patients on surgical intensive care units were enrolled in this study. All hemithoraces were evaluated using both HCU and CR. Definite diagnosis of PE was achieved using a high-end ultrasound system as standard of reference. Statistical analysis was performed using 2 × 2 tables and a McNemar test. A P value of <0.05 was considered statistically significant. Results: PE was present in 35 of 48 hemithoraces (73%). The HCU examination was carried out technically successfully in all hemithoraces. Sensitivity and specificity of HCU for the diagnosis of PE was 91% and 100%, respectively, whereas sensitivity and specificity of CR was 74% and 31%, respectively. The difference between HCU and CR was statistically significant with respect to specificity but not sensitivity (P = 0.008 and P = 0.11, respectively). Conclusion: Due to its ease of use and its high diagnostic yield HCU systems of the latest generation constitute a helpful technique for the primary assessment of PE

    Sleep-Disordered Breathing Is Associated With Reduced Left Atrial Strain Measured by Cardiac Magnetic Resonance Imaging in Patients After Acute Myocardial Infarction

    Get PDF
    Aims: Sleep disordered breathing (SDB) is known to cause left atrial (LA) remodeling. However, the relationship between SDB severity and LA dysfunction is insufficiently understood and may be elucidated by detailed feature tracking (FT) strain analysis of cardiac magnetic resonance images (CMR). After myocardial infarction (MI), both the left ventricle and atrium are subjected to increased stress which may be substantially worsened by concomitant SDB that could impair consequential healing. We therefore analyzed atrial strain in patients at the time of acute MI and 3 months after. Methods and Results: 40 patients with acute MI underwent CMR and polysomnography (PSG) within 3–5 days after MI. Follow-up was performed 3 months after acute MI. CMR cine data were analyzed using a dedicated FT software. Atrial strain (ε) and strain rate (SR) for atrial reservoir ([εs]; [SRs]), conduit ([εe]; [SRe]) and booster function ([εa]; [SRa]) were measured in two long-axis views. SDB was defined by an apnea-hypopnea-index (AHI) ≥15/h. Interestingly, LA εs and εe were significantly reduced in patients with SDB and correlated negative with AHI as a measure of SDB severity at both baseline and follow-up. Intriguingly, patients that exhibited a reduced AHI at follow-up were more likely to have developed improved atrial reservoir and conduit strain (linear regression, p=0.08 for εs and εe). Patients with improved SDB (ΔAHI + 5/h) showed a mean decrease of −5.3 ± 11.0% (p = 0.0131). Similarly, the difference for LA conduit function was +4.8 ± 5.9% (ΔAHI +5/h). Importantly, conventional volumetric parameters for atrial function (LA area, LA volume index) did not correlate with AHI at baseline or follow-up. Conclusion: Our results show that LA function measured by CMR strain but not by volumetry is impaired in patients with SDB during acute cardiac injury. Consistent with a mechanistic association, improvement of SBD at follow-up resulted in improved LA strain. LA strain measurement might thus provide insight into atrial function in patients with SDB

    Cardiac MRI Based Left Ventricular Global Function Index: Association with Disease Severity in Patients with ICD for Secondary Prevention

    Get PDF
    Left ventricular (LV) ejection fraction (LVEF) is the most widely used prognostic marker in cardiovascular diseases. LV global function index (LVGFI) is a novel marker which incorporates the total LV structure in the assessment of LV cardiac performance. We evaluated the prognostic significance of LVGFI, measured by cardiovascular magnetic resonance (CMR), in predicting mortality and ICD therapies in a real-world (ICD) population with secondary ICD prevention indication, to detect a high-risk group among these patients. In total, 105 patients with cardiac MRI prior to the ICD implantation were included (mean age 56 ± 16 years old; 76% male). Using the MRI data for each patient LVGFI was determined and a cut-off for the LVGFI value was calculated. Patients were followed up every four to six months in our or clinics in proximity. Data on the occurrence of heart failure symptoms and or mortality, as well as device therapies and other vital parameters, were collected. Follow up duration was 37 months in median. The mean LVGFI was 24.5%, the cut off value for LVGFI 13.5%. According to the LVGFI Index patient were divided into 2 groups, 86 patients in the group with the higher LVGFI und 19 patients in the lower group. The LVGFI correlates significantly with the LVEF (r = 0.642, p I, the initial device or a medication (each p = n.s.). Further, in Kaplan–Meier analysis no association was evident between the LVGFI and adequate ICD therapy (p = n.s.). In secondary prevention ICD patients reduced LVGFI was shown as an independent predictor for mortality and rehospitalization, but not for ICD therapies. We were able to identify a high-risk collective among these patients, but further investigation is needed to evaluate LVGFI compared to ejection fraction, especially in patients with an elevated risk for adverse cardiac events

    Abnormal P‐wave terminal force in lead V 1 is a marker for atrial electrical dysfunction but not structural remodelling

    Get PDF
    Aims There is a lack of diagnostic and therapeutic options for patients with atrial cardiomyopathy and paroxysmal atrial fibrillation. Interestingly, an abnormal P-wave terminal force in electrocardiogram lead V1 (PTFV1) has been associated with atrial cardiomyopathy, but this association is poorly understood. We investigated PTFV1 as a marker for functional, electrical, and structural atrial remodelling. Methods and results Fifty-six patients with acute myocardial infarction and 13 kidney donors as control cohort prospectively underwent cardiac magnetic resonance imaging to evaluate the association between PTFV1 and functional remodelling (atrial strain). To further investigate underlying pathomechanisms, right atrial appendage biopsies were collected from 32 patients undergoing elective coronary artery bypass grafting. PTFV1 was assessed as the product of negative P-wave amplitude and duration in lead V1 and defined as abnormal if ≥4000 ms*μV. Activity of cardiac Ca/calmodulin-dependent protein kinase II (CaMKII) was determined by a specific HDAC4 pull-down assay as a surrogate for electrical remodelling. Atrial fibrosis was quantified using Masson's trichrome staining as a measure for structural remodelling. Multivariate regression analyses were performed to account for potential confounders. A total of 16/56 (29%) of patients with acute myocardial infarction, 3/13 (23%) of kidney donors, and 15/32 (47%) of patients undergoing coronary artery bypass grafting showed an abnormal PTFV1. In patients with acute myocardial infarction, left atrial (LA) strain was significantly reduced in the subgroup with an abnormal PTFV1 (LA reservoir strain: 32.28 ± 12.86% vs. 22.75 ± 13.94%, P = 0.018; LA conduit strain: 18.87 ± 10.34% vs. 10.17 ± 8.26%, P = 0.004). Abnormal PTFV1 showed a negative correlation with LA conduit strain independent from clinical covariates (coefficient B: −7.336, 95% confidence interval −13.577 to −1.095, P = 0.022). CaMKII activity was significantly increased from (normalized to CaMKII expression) 0.87 ± 0.17 to 1.46 ± 0.15 in patients with an abnormal PTFV1 (P = 0.047). This increase in patients with an abnormal PTFV1 was independent from clinical covariates (coefficient B: 0.542, 95% confidence interval 0.057 to 1.027, P = 0.031). Atrial fibrosis was significantly lower with 12.32 ± 1.63% in patients with an abnormal PTFV1 (vs. 20.50 ± 2.09%, P = 0.006), suggesting PTFV1 to be a marker for electrical but not structural remodelling. Conclusions Abnormal PTFV1 is an independent predictor for impaired atrial function and for electrical but not for structural remodelling. PTFV1 may be a promising tool to evaluate patients for atrial cardiomyopathy and for risk of atrial fibrillation
    corecore