5 research outputs found

    Photocathode Behavior During High Current Running in the Cornell ERL Photoinjector

    Full text link
    The Cornell University Energy Recovery Linac (ERL) photoinjector has recently demonstrated operation at 20 mA for approximately 8 hours, utilizing a multialkali photocathode deposited on a Si substrate. We describe the recipe for photocathode deposition, and will detail the parameters of the run. Post-run analysis of the photocathode indicates the presence of significant damage to the substrate, perhaps due to ion back-bombardment from the residual beamline gas. While the exact cause of the substrate damage remains unknown, we describe multiple surface characterization techniques (X-ray fluorescence spectroscopy, X-ray diffraction, atomic force and scanning electron microscopy) used to study the interesting morphological and crystallographic features of the photocathode surface after its use for high current beam production. Finally, we present a simple model of crystal damage due to ion back-bombardment, which agrees qualitatively with the distribution of damage on the substrate surface.Comment: 20 pages, 15 figure

    Efficient generation of short and high-power x-ray free-electron-laser pulses based on superradiance with a transversely tilted beam

    No full text
    X-ray free electron lasers (XFELs) are innovative research tools able to produce high-power and short radiation pulses for multiple scientific applications. We present a new method to produce XFEL radiation with much higher power and shorter pulse lengths than the ones obtained at standard XFEL facilities. This will enable new kinds of experiments in scientific fields such as nonlinear optics and bioimaging. The scheme is based on introducing a transverse tilt to the electron beam, thus limiting the fraction of the bunch able to produce XFEL radiation. In the first part of the undulator beam line only the tail of the electron bunch lases. Then, by properly delaying and correcting the trajectory of the electron beam between some undulator modules, all the electrons can contribute to the amplification of a very short XFEL pulse. Apart from being efficient, our method is flexible since by tuning the tilt amplitude one can obtain shorter or more energetic XFEL pulses. The scheme can readily be applied since, besides the standard components of an XFEL facility, it only needs small chicanes between certain undulator modules. We have confirmed the validity of our proposal with numerical simulations done for the SwissFEL case

    The SwissFEL soft X-ray free-electron laser beamline: Athos

    No full text
    The SwissFEL soft X-ray free-electron laser (FEL) beamline Athos will be ready for user operation in 2021. Its design includes a novel layout of alternating magnetic chicanes and short undulator segments. Together with the APPLE X architecture of undulators, the Athos branch can be operated in different modes producing FEL beams with unique characteristics ranging from attosecond pulse length to high-power modes. Further space has been reserved for upgrades including modulators and an external seeding laser for better timing control. All of these schemes rely on state-of-the-art technologies described in this overview. The optical transport line distributing the FEL beam to the experimental stations was designed with the whole range of beam parameters in mind. Currently two experimental stations, one for condensed matter and quantum materials research and a second one for atomic, molecular and optical physics, chemical sciences and ultrafast single-particle imaging, are being laid out such that they can profit from the unique soft X-ray pulses produced in the Athos branch in an optimal way.ISSN:0909-0495ISSN:1600-577
    corecore