20,773 research outputs found

    Anomalous optical absorption in a random system with scale-free disorder

    Get PDF
    We report on an anomalous behavior of the absorption spectrum in a one-dimensional lattice with long-range-correlated diagonal disorder with a power-like spectrum in the form S(k) ~ 1/k^A. These type of correlations give rise to a phase of extended states at the band center, provided A is larger than a critical value A_c. We show that for A < A_c the absorption spectrum is single-peaked, while an additional peak arises when A > A_c, signalling the occurrence of the Anderson transition. The peak is located slightly below the low-energy mobility edge, providing a unique spectroscopic tool to monitor the latter. We present qualitative arguments explaining this anomaly.Comment: 4 pages, 4 postscript figures, uses revtex

    Isocausal spacetimes may have different causal boundaries

    Full text link
    We construct an example which shows that two isocausal spacetimes, in the sense introduced by Garc\'ia-Parrado and Senovilla, may have c-boundaries which are not equal (more precisely, not equivalent, as no bijection between the completions can preserve all the binary relations induced by causality). This example also suggests that isocausality can be useful for the understanding and computation of the c-boundary.Comment: Minor modifications, including the title, which matches now with the published version. 12 pages, 3 figure

    Phase resolved X-ray spectroscopy of HDE228766: Probing the wind of an extreme Of+/WNLha star

    Full text link
    HDE228766 is a very massive binary system hosting a secondary component, which is probably in an intermediate evolutionary stage between an Of supergiant and an WN star. The wind of this star collides with the wind of its O8 II companion, leading to relatively strong X-ray emission. Measuring the orbital variations of the line-of-sight absorption toward the X-ray emission from the wind-wind interaction zone yields information on the wind densities of both stars. X-ray spectra have been collected at three key orbital phases to probe the winds of both stars. Optical photometry has been gathered to set constraints on the orbital inclination of the system. The X-ray spectra reveal prominent variations of the intervening column density toward the X-ray emission zone, which are in line with the expectations for a wind-wind collision. We use a toy model to set constraints on the stellar wind parameters by attempting to reproduce the observed variations of the relative fluxes and wind optical depths at 1 keV. The lack of strong optical eclipses sets an upper limit of about 68 degrees on the orbital inclination. The analysis of the variations of the X-ray spectra suggests an inclination in the range 54 - 61 degrees and indicates that the secondary wind momentum ratio exceeds that of the primary by at least a factor 5. Our models further suggest that the bulk of the X-ray emission arises from the innermost region of the wind interaction zone, which is from a region whose outer radius, as measured from the secondary star, lies between 0.5 and 1.5 times the orbital separation

    Renormalized coordinate approach to the thermalization process

    Full text link
    We consider a particle in the harmonic approximation coupled linearly to an environment. modeled by an infinite set of harmonic oscillators. The system (particle--environment) is considered in a cavity at thermal equilibrium. We employ the recently introduced notion of renormalized coordinates to investigate the time evolution of the particle occupation number. For comparison we first present this study in bare coordinates. For a long ellapsed time, in both approaches, the occupation number of the particle becomes independent of its initial value. The value of ocupation number of the particle is the physically expected one at the given temperature. So we have a Markovian process, describing the particle thermalization with the environment. With renormalized coordinates no renormalization procedure is required, leading directly to a finite result.Comment: 16 pages, LATEX, 2 figure

    Mathematical Model of Easter Island Society Collapse

    Full text link
    In this paper we consider a mathematical model for the evolution and collapse of the Easter Island society, starting from the fifth century until the last period of the society collapse (fifteen century). Based on historical reports, the available primary sources consisted almost exclusively on the trees. We describe the inhabitants and the resources as an isolated system and both considered as dynamic variables. A mathematical analysis about why the structure of the Easter Island community collapse is performed. In particular, we analyze the critical values of the fundamental parameters driving the interaction humans-environment and consequently leading to the collapse. The technological parameter, quantifying the exploitation of the resources, is calculated and applied to the case of other extinguished civilization (Cop\'an Maya) confirming, with a sufficiently precise estimation, the consistency of the adopted model.Comment: 9 pages, 1 figure, final version published on EuroPhysics Letter

    Anderson Localization in Disordered Vibrating Rods

    Full text link
    We study, both experimentally and numerically, the Anderson localization phenomenon in torsional waves of a disordered elastic rod, which consists of a cylinder with randomly spaced notches. We find that the normal-mode wave amplitudes are exponentially localized as occurs in disordered solids. The localization length is measured using these wave amplitudes and it is shown to decrease as a function of frequency. The normal-mode spectrum is also measured as well as computed, so its level statistics can be analyzed. Fitting the nearest-neighbor spacing distribution a level repulsion parameter is defined that also varies with frequency. The localization length can then be expressed as a function of the repulsion parameter. There exists a range in which the localization length is a linear function of the repulsion parameter, which is consistent with Random Matrix Theory. However, at low values of the repulsion parameter the linear dependence does not hold.Comment: 10 pages, 6 figure

    Dipole formation at metal/PTCDA interfaces: Role of the Charge Neutrality Level

    Full text link
    The formation of a metal/PTCDA (3, 4, 9, 10-perylenetetracarboxylic dianhydride) interface barrier is analyzed using weak-chemisorption theory. The electronic structure of the uncoupled PTCDA molecule and of the metal surface is calculated. Then, the induced density of interface states is obtained as a function of these two electronic structures and the interaction between both systems. This induced density of states is found to be large enough (even if the metal/PTCDA interaction is weak) for the definition of a Charge Neutrality Level for PTCDA, located 2.45 eV above the highest occupied molecular orbital. We conclude that the metal/PTCDA interface molecular level alignment is due to the electrostatic dipole created by the charge transfer between the two solids.Comment: 6 page

    Mesoscopic circuits with charge discreteness:quantum transmission lines

    Full text link
    We propose a quantum Hamiltonian for a transmission line with charge discreteness. The periodic line is composed of an inductance and a capacitance per cell. In every cell the charge operator satisfies a nonlinear equation of motion because of the discreteness of the charge. In the basis of one-energy per site, the spectrum can be calculated explicitly. We consider briefly the incorporation of electrical resistance in the line.Comment: 11 pages. 0 figures. Will be published in Phys.Rev.

    Ge-substitutional defects and the r3xr3 <--> 3x3 transition in alpha--SnGe(111)

    Full text link
    The structure and energetics of Ge substitutional defects on the alpha-Sn/Ge(111) surface are analyzed using Density Functional Theory (DFT) molecular dynamics (MD) simulations. An isolated Ge defect induces a very local distortion of the 3x3 reconstruction, confined to a significant downwards displacement (-0.31 A) at the defect site and a modest upward displacement (0.05 A) of the three Sn nearest neighbours with partially occupied dangling bonds. Dynamical fluctuations between the two degenerate ground states yield the six-fold symmetry observed around a defect in the experiments at room temperature. Defect-defect interactions are controlled by the energetics of the deformation of the 3x3 structure: They are negligible for defects on the honeycomb lattice and quite large for a third defect on the hexagonal lattice, explaining the low temperature defect ordering.Comment: 4 pages, Revtex, 7 Encapsulated Postscript figures, uses epsf.sty. Submitted to Phys. Rev. Let
    • …
    corecore