24,156 research outputs found
Anomalously Slow Cross Symmetry Phase Relaxation, Thermalized Non-Equilibrated Matter and Quantum Computing Beyond the Quantum Chaos Border
Thermalization in highly excited quantum many-body system does not
necessarily mean a complete memory loss of the way the system was formed. This
effect may pave a way for a quantum computing, with a large number of qubits
--1000, far beyond the quantum chaos border. One of the
manifestations of such a thermalized non-equilibrated matter is revealed by a
strong asymmetry around 90 c.m. of evaporating proton yield in the
Bi(,p) photonuclear reaction. The effect is described in terms of
anomalously slow cross symmetry phase relaxation in highly excited quantum
many-body systems with exponentially large Hilbert space dimensions. In the
above reaction this phase relaxation is about eight orders of magnitude slower
than energy relaxation (thermalization).Comment: Published in SIGMA (Symmetry, Integrability and Geometry: Methods and
Applications) at http://www.emis.de/journals/SIGMA
Experimental proposal for accurate determination of the phase relaxation time and testing a formation of thermalized non-equilibrated matter in highly excited quantum many-body systems
We estimate how accurate the phase relaxation time of quantum many-body
systems can be determined from data on forward peaking of evaporating protons
from a compound nucleus. The angular range and accuracy of the data needed for
a reliable determination of the phase relaxation time are evaluated. The
general method is applied to analyze the inelastic scattering of 18 MeV protons
from Pt for which previously measured double differential cross sections for
two angles in the evaporating domain of the spectra show a strong forward
peaking. A new experiment for an improved determination of the phase relaxation
time is proposed. The experiment is also highly desirable for an accurate test
of a formation of thermalized non-equilibrated matter in quantum many-body
systems.Comment: 5 pages, 3 figure
Improvement and analysis of a pseudo random bit generator by means of cellular automata
In this paper, we implement a revised pseudo random bit generator based on a
rule-90 cellular automaton. For this purpose, we introduce a sequence matrix
H_N with the aim of calculating the pseudo random sequences of N bits employing
the algorithm related to the automaton backward evolution. In addition, a
multifractal structure of the matrix H_N is revealed and quantified according
to the multifractal formalism. The latter analysis could help to disentangle
what kind of automaton rule is used in the randomization process and therefore
it could be useful in cryptanalysis. Moreover, the conditions are found under
which this pseudo random generator passes all the statistical tests provided by
the National Institute of Standards and Technology (NIST)Comment: 20 pages, 12 figure
Kinematic study of planetary nebulae in NGC 6822
By measuring precise radial velocities of planetary nebulae (which belong to
the intermediate age population), H II regions, and A-type supergiant stars
(which are members of the young population) in NGC 6822, we aim to determine if
both types of population share the kinematics of the disk of H I found in this
galaxy.
Spectroscopic data for four planetary nebulae were obtained with the high
spectral resolution spectrograph Magellan Inamori Kyocera Echelle (MIKE) on the
Magellan telescope at Las Campanas Observatory. Data for other three PNe and
one H II region were obtained from the SPM Catalog of Extragalactic Planetary
Nebulae which employed the Manchester Echelle Spectrometer attached to the 2.1m
telescope at the Observatorio Astron\'omico Nacional, M\'exico. In the
wavelength calibrated spectra, the heliocentric radial velocities were measured
with a precision better than 5-6 km s. Data for three additional H II
regions and a couple of A-type supergiant stars were collected from the
literature. The heliocentric radial velocities of the different objects were
compared to the velocities of the H i disk at the same position.
From the analysis of radial velocities it is found that H II regions and
A-type supergiants do share the kinematics of the H I disk at the same
position, as expected for these young objects. On the contrary, planetary
nebula velocities differ significantly from that of the H I at the same
position. The kinematics of planetary nebulae is independent from the young
population kinematics and it is closer to the behavior shown by carbon stars,
which are intermediate-age members of the stellar spheroid existing in this
galaxy. Our results are confirming that there are at least two very different
kinematical systems in NGC 6822
Isocausal spacetimes may have different causal boundaries
We construct an example which shows that two isocausal spacetimes, in the
sense introduced by Garc\'ia-Parrado and Senovilla, may have c-boundaries which
are not equal (more precisely, not equivalent, as no bijection between the
completions can preserve all the binary relations induced by causality). This
example also suggests that isocausality can be useful for the understanding and
computation of the c-boundary.Comment: Minor modifications, including the title, which matches now with the
published version. 12 pages, 3 figure
Numerical precision radiative corrections to the Dalitz plot of baryon semileptonic decays including the spin-momentum correlation of the decaying and emitted baryons
We calculate the radiative corrections to the angular correlation between the
polarization of the decaying and the direction of the emitted spin one-half
baryons in the semileptonic decay mode. The final results are presented, first,
with the triple integration of the bremsstrahlung photon ready to be performed
numerically and, second, in an analytical form. A third presentation of our
results in the form of numerical arrays of coefficients to be multiplied by the
quadratic products of form factors is discussed. This latter may be the most
practical one to use in Monte Carlo simulations. A series of crosschecks is
performed. Previous results to order (alpha/pi)(q/M_1) for the decays of
unpolarized baryons are reviewed, too, where q is the momentum transfer and M_1
is the mass of the decaying baryon. This paper is self-contained and organized
to make it accessible and reliable in the analysis of the Dalitz plot of
precision experiments involving heavy quarks and is not compromised to fixing
the form factors at predetermined values. It is assumed that the real photons
are kinematically discriminated. Otherwise, our results have a general
model-independent applicability.Comment: 34 pages, 4 tables, no figures. Some sections have been shortened.
Conclusions remain unchange
Ultracold mixtures of metastable He and Rb: scattering lengths from ab initio calculations and thermalization measurements
We have investigated the ultracold interspecies scattering properties of
metastable triplet He and Rb. We performed state-of-the-art ab initio
calculations of the relevant interaction potential, and measured the
interspecies elastic cross section for an ultracold mixture of metastable
triplet He and Rb in a quadrupole magnetic trap at a temperature of
0.5 mK. Our combined theoretical and experimental study gives an interspecies
scattering length , which prior to this work was
unknown. More general, our work shows the possibility of obtaining accurate
scattering lengths using ab initio calculations for a system containing a
heavy, many-electron atom, such as Rb.Comment: 11 pages, 11 figures, accepted for publication in Phys. Rev.
- …