17,617 research outputs found

    Anomalous optical absorption in a random system with scale-free disorder

    Get PDF
    We report on an anomalous behavior of the absorption spectrum in a one-dimensional lattice with long-range-correlated diagonal disorder with a power-like spectrum in the form S(k) ~ 1/k^A. These type of correlations give rise to a phase of extended states at the band center, provided A is larger than a critical value A_c. We show that for A < A_c the absorption spectrum is single-peaked, while an additional peak arises when A > A_c, signalling the occurrence of the Anderson transition. The peak is located slightly below the low-energy mobility edge, providing a unique spectroscopic tool to monitor the latter. We present qualitative arguments explaining this anomaly.Comment: 4 pages, 4 postscript figures, uses revtex

    Renormalized coordinate approach to the thermalization process

    Full text link
    We consider a particle in the harmonic approximation coupled linearly to an environment. modeled by an infinite set of harmonic oscillators. The system (particle--environment) is considered in a cavity at thermal equilibrium. We employ the recently introduced notion of renormalized coordinates to investigate the time evolution of the particle occupation number. For comparison we first present this study in bare coordinates. For a long ellapsed time, in both approaches, the occupation number of the particle becomes independent of its initial value. The value of ocupation number of the particle is the physically expected one at the given temperature. So we have a Markovian process, describing the particle thermalization with the environment. With renormalized coordinates no renormalization procedure is required, leading directly to a finite result.Comment: 16 pages, LATEX, 2 figure

    Mathematical Model of Easter Island Society Collapse

    Full text link
    In this paper we consider a mathematical model for the evolution and collapse of the Easter Island society, starting from the fifth century until the last period of the society collapse (fifteen century). Based on historical reports, the available primary sources consisted almost exclusively on the trees. We describe the inhabitants and the resources as an isolated system and both considered as dynamic variables. A mathematical analysis about why the structure of the Easter Island community collapse is performed. In particular, we analyze the critical values of the fundamental parameters driving the interaction humans-environment and consequently leading to the collapse. The technological parameter, quantifying the exploitation of the resources, is calculated and applied to the case of other extinguished civilization (Cop\'an Maya) confirming, with a sufficiently precise estimation, the consistency of the adopted model.Comment: 9 pages, 1 figure, final version published on EuroPhysics Letter

    Phase resolved X-ray spectroscopy of HDE228766: Probing the wind of an extreme Of+/WNLha star

    Full text link
    HDE228766 is a very massive binary system hosting a secondary component, which is probably in an intermediate evolutionary stage between an Of supergiant and an WN star. The wind of this star collides with the wind of its O8 II companion, leading to relatively strong X-ray emission. Measuring the orbital variations of the line-of-sight absorption toward the X-ray emission from the wind-wind interaction zone yields information on the wind densities of both stars. X-ray spectra have been collected at three key orbital phases to probe the winds of both stars. Optical photometry has been gathered to set constraints on the orbital inclination of the system. The X-ray spectra reveal prominent variations of the intervening column density toward the X-ray emission zone, which are in line with the expectations for a wind-wind collision. We use a toy model to set constraints on the stellar wind parameters by attempting to reproduce the observed variations of the relative fluxes and wind optical depths at 1 keV. The lack of strong optical eclipses sets an upper limit of about 68 degrees on the orbital inclination. The analysis of the variations of the X-ray spectra suggests an inclination in the range 54 - 61 degrees and indicates that the secondary wind momentum ratio exceeds that of the primary by at least a factor 5. Our models further suggest that the bulk of the X-ray emission arises from the innermost region of the wind interaction zone, which is from a region whose outer radius, as measured from the secondary star, lies between 0.5 and 1.5 times the orbital separation

    Formation of atom wires on vicinal silicon

    Full text link
    The formation of atomic wires via pseudomorphic step-edge decoration on vicinal silicon surfaces has been analyzed for Ga on the Si(112) surface using Scanning Tunneling Microscopy and Density Functional Theory calculations. Based on a chemical potential analysis involving more than thirty candidate structures and considering various fabrication procedures, it is concluded that pseudomorphic growth on stepped Si(112), both under equilibrium and non-equilibrium conditions, must favor formation of Ga zig-zag chains rather than linear atom chains. The surface is non-metallic and presents quasi-one dimensional character in the lowest conduction band.Comment: submitte

    Mesoscopic circuits with charge discreteness:quantum transmission lines

    Full text link
    We propose a quantum Hamiltonian for a transmission line with charge discreteness. The periodic line is composed of an inductance and a capacitance per cell. In every cell the charge operator satisfies a nonlinear equation of motion because of the discreteness of the charge. In the basis of one-energy per site, the spectrum can be calculated explicitly. We consider briefly the incorporation of electrical resistance in the line.Comment: 11 pages. 0 figures. Will be published in Phys.Rev.

    Localization Properties of the Periodic Random Anderson Model

    Full text link
    We consider diagonal disordered one-dimensional Anderson models with an underlying periodicity. We assume the simplest periodicity, i.e., we have essentially two lattices, one that is composed of the random potentials and the other of non-random potentials. Due to the periodicity special resonance energies appear, which are related to the lattice constant of the non-random lattice. Further on two different types of behaviors are observed at the resonance energies. When a random site is surrounded by non-random sites, this model exhibits extended states at the resonance energies, whereas otherwise all states are localized with, however, an increase of the localization length at these resonance energies. We study these resonance energies and evaluate the localization length and the density of states around these energies.Comment: 4 page

    Phase-coherence time saturation in mesoscopic systems: wave function collapse

    Full text link
    A finite phase-coherence time Ï„Ï•meas\tau_{\phi}^{meas} emerges from iterative measurement onto a quantum system. For a rapid sequence, the phase-coherence time is found explicitly. For the stationary charge conduction problem, it is bounded. At all order, in the time-interval of measurements, we propose a general expression for Ï„Ï•meas\tau_{\phi}^{meas}.Comment: 8 pages, 0 figures, Late

    Transport properties of one-dimensional Kronig-Penney models with correlated disorder

    Full text link
    Transport properties of one-dimensional Kronig-Penney models with binary correlated disorder are analyzed using an approach based on classical Hamiltonian maps. In this method, extended states correspond to bound trajectories in the phase space of a parametrically excited linear oscillator, while the on site-potential of the original model is transformed to an external force. We show that in this representation the two probe conductance takes a simple geometrical form in terms of evolution areas in phase-space. We also analyze the case of a general N-mer model.Comment: 16 pages in Latex, 12 Postscript figures include
    • …
    corecore