1,841 research outputs found
Deadlock detection of Java Bytecode
This paper presents a technique for deadlock detection of Java programs. The
technique uses typing rules for extracting infinite-state abstract models of
the dependencies among the components of the Java intermediate language -- the
Java bytecode. Models are subsequently analysed by means of an extension of a
solver that we have defined for detecting deadlocks in process calculi. Our
technique is complemented by a prototype verifier that also covers most of the
Java features.Comment: Pre-proceedings paper presented at the 27th International Symposium
on Logic-Based Program Synthesis and Transformation (LOPSTR 2017), Namur,
Belgium, 10-12 October 2017 (arXiv:1708.07854
Appropriation of RÃo San Juan water by Monterrey City, Mexico: implications for agriculture and basin water sharing
Abstract Monterrey metropolitan area's growth has resulted in water transfers from the RÃo San Juan basin with significant impacts for downstream water users, especially farmers in the Bajo RÃo San Juan (BRSJ) irrigation district. El Cuchillo dam is the centerpiece of the basin's water management infrastructure and has become the flashpoint of a multi-faceted water dispute between the states of Nuevo León and Tamaulipas as well as between urban and agricultural water interests in the basin. Subsequent to El Cuchillo's implementation in 1994, the BRSJ irrigation district has been modifying its irrigation operations to adjust to the new water availability scenario. Compensation arrangements for farmers have been established, including crop loss payments on the order of US$ 100 per hectare unirrigable due to the diversion of water to Monterrey plus 60% of the water diverted to be returned to farmers as treated effluent via the Ayancual Creek and PesquerÃa River, a process with its own water competition and environmental implications. The Mexican irrigation sector will continue to face intense competition for water given: (a) low water productivity in agriculture leading decisionmakers to allocate water to higher productivity uses particularly in cities, (b) priority accorded to the domestic use component of municipal water supply, and in the BRSJ case, (c) Mexico's national interests in meeting its water sharing obligations with the United States
Honey as a complementary medicine
The beneficial effects of honey on human health have long been recognized. Today, many of those positive effects have been studied to elucidate its mode of action. This review briefly summarizes the best studied features of honey, highlighting it as an appealing alternative medicine. In these reports, the health benefits of honey range from antioxidant, immunomodulatory, and anti-inflammatory activity to anticancer action, metabolic and cardiovascular benefits, prebiotic properties, human pathogen control, and antiviral activity. These studies also support that the honey's biological activity is mainly dependent on its floral or geographic origin. In addition, some promising synergies between honey and antibiotics have been found, as well as some antiviral properties that require further investigation. Altogether, these studies show that honey is effectively a nutraceutical foodstuff.info:eu-repo/semantics/publishedVersio
Molecular and Cellular Basis of Microvascular Perfusion Deficits Induced by Clostridium perfringens and Clostridium septicum
Reduced tissue perfusion leading to tissue ischemia is a central component of the pathogenesis of myonecrosis caused by Clostridium perfringens. The C. perfringens α-toxin has been shown capable of inducing these changes, but its potential synergy with perfringolysin O (θ-toxin) is less well understood. Similarly, Clostridium septicum is a highly virulent causative agent of spontaneous gas gangrene, but its effect on the microcirculation has not been examined. Therefore, the aim of this study was to use intravital microscopy to examine the effects of C. perfringens and C. septicum on the functional microcirculation, coupled with the use of isogenic toxin mutants to elucidate the role of particular toxins in the resultant microvascular perfusion deficits. This study represents the first time this integrated approach has been used in the analysis of the pathological response to clostridial toxins. Culture supernatants from wild-type C. perfringens induced extensive cell death within 30 min, as assessed by in vivo uptake of propidium iodide. Furthermore, significant reductions in capillary perfusion were observed within 60 min. Depletion of either platelets or neutrophils reduced the alteration in perfusion, consistent with a role for these blood-borne cells in obstructing perfusion. In addition, mutation of either the α-toxin or perfringolysin O structural genes attenuated the reduction in perfusion, a process that was reversed by genetic complementation. C. septicum also induced a marked reduction in perfusion, with the degree of microvascular compromise correlating with the level of the C. septicum α-toxin. Together, these data indicate that as a result of its ability to produce α-toxin and perfringolysin O, C. perfringens rapidly induces irreversible cellular injury and a marked reduction in microvascular perfusion. Since C. septicum induces a similar reduction in microvascular perfusion, it is postulated that this function is central to the pathogenesis of clostridial myonecrosis, irrespective of the causative bacterium
Illness perceptions and explanatory models of viral hepatitis B & C among immigrants and refugees: a narrative systematic review.
© 2015 Owiti et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,
unless otherwise stated.BACKGROUND: Hepatitis B and C (HBV, HCV) infections are associated with high morbidity and mortality. Many countries with traditionally low prevalence (such as UK) are now planning interventions (screening, vaccination, and treatment) of high-risk immigrants from countries with high prevalence. This review aimed to synthesise the evidence on immigrants' knowledge of HBV and HCV that might influence the uptake of clinical interventions. The review was also used to inform the design and successful delivery of a randomised controlled trial of targeted screening and treatment. METHODS: Five databases (PubMed, CINHAL, SOCIOFILE, PsycINFO & Web of Science) were systematically searched, supplemented by reference tracking, searches of selected journals, and of relevant websites. We aimed to identify qualitative and quantitative studies that investigated knowledge of HBV and HCV among immigrants from high endemic areas to low endemic areas. Evidence, extracted according to a conceptual framework of Kleinman's explanatory model, was subjected to narrative synthesis. We adapted the PEN-3 model to categorise and analyse themes, and recommend strategies for interventions to influence help-seeking behaviour. RESULTS: We identified 51 publications including quantitative (n = 39), qualitative (n = 11), and mixed methods (n = 1) designs. Most of the quantitative studies included small samples and had heterogeneous methods and outcomes. The studies mainly concentrated on hepatitis B and ethnic groups of South East Asian immigrants residing in USA, Canada, and Australia. Many immigrants lacked adequate knowledge of aetiology, symptoms, transmission risk factors, prevention strategies, and treatment, of hepatitis HBV and HCV. Ethnicity, gender, better education, higher income, and English proficiency influenced variations in levels and forms of knowledge. CONCLUSION: Immigrants are vulnerable to HBV and HCV, and risk life-threatening complications from these infections because of poor knowledge and help-seeking behaviour. Primary studies in this area are extremely diverse and of variable quality precluding meta-analysis. Further research is needed outside North America and Australia
Genome-wide association and HLA fine-mapping studies identify risk loci and genetic pathways underlying allergic rhinitis
Allergic rhinitis is the most common clinical presentation of allergy, affecting 400 million people worldwide, with increasing incidence in westernized countries1,2. To elucidate the genetic architecture and understand the underlying disease mechanisms, we carried out a meta-analysis of allergic rhinitis in 59,762 cases and 152,358 controls of European ancestry and identified a total of 41 risk loci for allergic rhinitis, including 20 loci not previously associated with allergic rhinitis, which were confirmed in a replication phase of 60,720 cases and 618,527 controls. Functional annotation implicated genes involved in various immune pathways, and fine mapping of the HLA region suggested amino acid variants important for antigen binding. We further performed genome-wide association study (GWAS) analyses of allergic sensitization against inhalant allergens and nonallergic rhinitis, which suggested shared genetic mechanisms across rhinitis-related traits. Future studies of the identified loci and genes might identify novel targets for treatment and prevention of allergic rhinitis
A new WHO bottle bioassay method to assess the susceptibility of mosquito vectors to public health insecticides: results from a WHO-coordinated multi-centre study
BACKGROUND: The continued spread of insecticide resistance in mosquito vectors of malaria and arboviral diseases may lead to operational failure of insecticide-based interventions if resistance is not monitored and managed efficiently. This study aimed to develop and validate a new WHO glass bottle bioassay method as an alternative to the WHO standard insecticide tube test to monitor mosquito susceptibility to new public health insecticides with particular modes of action, physical properties or both. METHODS: A multi-centre study involving 21 laboratories worldwide generated data on the susceptibility of seven mosquito species (Aedes aegypti, Aedes albopictus, Anopheles gambiae sensu stricto [An. gambiae s.s.], Anopheles funestus, Anopheles stephensi, Anopheles minimus and Anopheles albimanus) to seven public health insecticides in five classes, including pyrethroids (metofluthrin, prallethrin and transfluthrin), neonicotinoids (clothianidin), pyrroles (chlorfenapyr), juvenile hormone mimics (pyriproxyfen) and butenolides (flupyradifurone), in glass bottle assays. The data were analysed using a Bayesian binomial model to determine the concentration-response curves for each insecticide-species combination and to assess the within-bioassay variability in the susceptibility endpoints, namely the concentration that kills 50% and 99% of the test population (LC50 and LC99, respectively) and the concentration that inhibits oviposition of the test population by 50% and 99% (OI50 and OI99), to measure mortality and the sterilizing effect, respectively. RESULTS: Overall, about 200,000 mosquitoes were tested with the new bottle bioassay, and LC50/LC99 or OI50/OI99 values were determined for all insecticides. Variation was seen between laboratories in estimates for some mosquito species-insecticide combinations, while other test results were consistent. The variation was generally greater with transfluthrin and flupyradifurone than with the other compounds tested, especially against Anopheles species. Overall, the mean within-bioassay variability in mortality and oviposition inhibition were < 10% for most mosquito species-insecticide combinations. CONCLUSION: Our findings, based on the largest susceptibility dataset ever produced on mosquitoes, showed that the new WHO bottle bioassay is adequate for evaluating mosquito susceptibility to new and promising public health insecticides currently deployed for vector control. The datasets presented in this study have been used recently by the WHO to establish 17 new insecticide discriminating concentrations (DCs) for either Aedes spp. or Anopheles spp. The bottle bioassay and DCs can now be widely used to monitor baseline insecticide susceptibility of wild populations of vectors of malaria and Aedes-borne diseases worldwide
- …