16,235 research outputs found

    V_{us} from hyperon semileptonic decays

    Full text link
    A model-independent determination of the CKM matrix element V_{us} from five measured strangeness-changing hyperon semileptonic decays is performed. Flavor SU(3) symmetry breaking effects in the leading vector and axial-vector form factors are analyzed in the framework of the 1/N_c expansion of QCD. A fit to experimental data allows one to extract the value V_{us}=0.2199\pm 0.0026, which is comparable to the one from K_{e3} decays. This reconciliation is achieved through second-order symmetry breaking effects of a few percent in the form factors f_1, which increase their magnitudes over their SU(3) predictions.Comment: 23 pages, Revtex4, 12 tables, no figure

    Law, Liberty and the Rule of Law (in a Constitutional Democracy)

    Get PDF
    In the hunt for a better--and more substantial--awareness of the “law,” The author intends to analyze the different notions related to the “rule of law” and to criticize the conceptions that equate it either to the sum of “law” and “rule” or to the formal assertion that “law rules,” regardless of its relationship to certain principles, including both “negative” and “positive” liberties. Instead, he pretends to scrutinize the principles of the “rule of law,” in general, and in a “constitutional democracy,” in particular, to conclude that the tendency to reduce the “democratic principle” to the “majority rule” (or “majority principle”), i.e. to whatever pleases the majority, as part of the “positive liberty,” is contrary both to the “negative liberty” and to the “rule of law” itself

    Radiative corrections to all charge assignments of heavy quark baryon semileptonic decays

    Get PDF
    In semileptonic decays of spin-1/2 baryons containing heavy quarks up to six charge assignments for the baryons and lepton are possible. We show that the radiative corrections to four of these possibilities can be directly obtained from the final results of the two possibilities previously studied. There is no need to recalculate integrals over virtual or real photon momentum or any traces.Comment: 15 pages, 2 figures, RevTex. Extended discussion. Final version to appear in Physical Review

    One-loop vertex integrals in heavy-particle effective theories

    Get PDF
    We give a complete analytical computation of three-point one-loop integrals with one heavy propagator, up to the third tensor rank, for arbitrary values of external momenta and masses.Comment: 10 pages, Latex, to appear in J. Phys.

    Breaking a Chaotic Cryptographic Scheme Based on Composition Maps

    Full text link
    Recently, a chaotic cryptographic scheme based on composition maps was proposed. This paper studies the security of the scheme and reports the following findings: 1) the scheme can be broken by a differential attack with 6+logL(MN)6+\lceil\log_L(MN)\rceil chosen-plaintext, where MNMN is the size of plaintext and LL is the number of different elements in plain-text; 2) the scheme is not sensitive to the changes of plaintext; 3) the two composition maps do not work well as a secure and efficient random number source.Comment: 9 pages, 7 figure

    Decoherence from internal degrees of freedom for cluster of mesoparticles : a hierarchy of master equations

    Get PDF
    A mesoscopic evolution equation for an ensemble of mesoparticles follows after the elimination of internal degrees of freedom. If the system is composed of a hierarchy of scales, the reduction procedure could be worked repeatedly and the characterization of this iterating method is carried out. Namely, a prescription describing a discrete hierarchy of master equations for the density operator is obtained. Decoherence follows from the irreversible coupling of the systems, defined by mesoscopic variables, to internal degrees of freedom. We discuss briefly the existence of systems with the same dynamics laws at different scales. We made an explicit calculation for an ensemble of particles with internal harmonic interaction in an external anharmonic field. New conditions related to the semiclassical limit for mesoscopic systems (Wigner-function) are conjectured.Comment: 19 pages, 0 figures, late

    Localization Properties of the Periodic Random Anderson Model

    Full text link
    We consider diagonal disordered one-dimensional Anderson models with an underlying periodicity. We assume the simplest periodicity, i.e., we have essentially two lattices, one that is composed of the random potentials and the other of non-random potentials. Due to the periodicity special resonance energies appear, which are related to the lattice constant of the non-random lattice. Further on two different types of behaviors are observed at the resonance energies. When a random site is surrounded by non-random sites, this model exhibits extended states at the resonance energies, whereas otherwise all states are localized with, however, an increase of the localization length at these resonance energies. We study these resonance energies and evaluate the localization length and the density of states around these energies.Comment: 4 page

    Methane activation and exchange by titanium-carbon multiple bonds

    Get PDF
    We demonstrate that a titanium-carbon multiple bond, specifically an alkylidyne ligand in the transient complex, (PNP)Ti≡C^(t)Bu (A) (PNP^− = N[2-P(CHMe_2)_(2)-4-methylphenyl]_2), can cleanly activate methane at room temperature with moderately elevated pressures to form (PNP)Ti=CHtBu(CH_3). Isotopic labeling and theoretical studies suggest that the alkylidene and methyl hydrogens exchange, either via tautomerization invoking a methylidene complex, (PNP)Ti=CH_(2)(CH_(2)^(t)Bu), or by forming the methane adduct (PNP)Ti≡C^(t)Bu(CH_4). The thermal, fluxional and chemical behavior of (PNP)Ti=CH^(t)Bu(CH_3) is also presented in this study
    corecore